BDNF enhances the functional reinnervation of the striatum by grafted fetal dopamine neurons. 1996

D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
Department of Surgery/Neurosurgery, University of Kentucky College of Medicine, Lexington 40536, USA.

Transplantation of fetal dopaminergic neurons to the striatum can ameliorate neurological deficits exhibited by experimental animals and human graft recipients with Parkinson's disease. Recovery, however, is incomplete due to suboptimal survival of grafted cells and limited synaptic integration with the host brain. A number of neurotrophic factors have recently been shown to promote the survival and differentiation of dopamine neurons in vitro. In the present study we examined the effects of one such factor, brain-derived neurotrophic factor (BDNF), on the development of fetal substantia nigra following transplantation to the dopamine-depleted striatum of adult rats. Infusion of BDNF greatly enhanced the reinnervation of the host striatum by the engrafted dopamine neurons, as determined by tyrosine hydroxylase immunostaining, and also increased the effect of the graft on locomotor behavior induced by amphetamine administration. These effects became apparent during the 4-week period of BDNF infusion and persisted for an additional 6 weeks following the termination of BDNF delivery. These findings demonstrate that BDNF exerts a significant effect on the functional reinnervation of the striatum by transplanted fetal dopamine neurons in the rat, and suggest that application of this factor might similarly improve the clinical efficacy of neural transplantation employed in the treatment for Parkinson's disease.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010300 Parkinson Disease A progressive, degenerative neurologic disease characterized by a TREMOR that is maximal at rest, retropulsion (i.e. a tendency to fall backwards), rigidity, stooped posture, slowness of voluntary movements, and a masklike facial expression. Pathologic features include loss of melanin containing neurons in the substantia nigra and other pigmented nuclei of the brainstem. LEWY BODIES are present in the substantia nigra and locus coeruleus but may also be found in a related condition (LEWY BODY DISEASE, DIFFUSE) characterized by dementia in combination with varying degrees of parkinsonism. (Adams et al., Principles of Neurology, 6th ed, p1059, pp1067-75) Idiopathic Parkinson Disease,Lewy Body Parkinson Disease,Paralysis Agitans,Primary Parkinsonism,Idiopathic Parkinson's Disease,Lewy Body Parkinson's Disease,Parkinson Disease, Idiopathic,Parkinson's Disease,Parkinson's Disease, Idiopathic,Parkinson's Disease, Lewy Body,Parkinsonism, Primary
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
January 1988, Progress in brain research,
D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
October 1991, The European journal of neuroscience,
D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
January 2009, Cell transplantation,
D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
October 1998, The Journal of comparative neurology,
D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
January 1995, Restorative neurology and neuroscience,
D M Yurek, and W Lu, and S Hipkens, and S J Wiegand
January 1994, Brain research bulletin,
Copied contents to your clipboard!