Phagosome-lysosome fusion is a calcium-independent event in macrophages. 1996

S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
Division of Infectious Diseases, San Francisco General Hospital, University of California at San Francisco 94143-0868, USA.

Phagosome-lysosome membrane fusion is a highly regulated event that is essential for intracellular killing of microorganisms. Functionally, it represents a form of polarized regulated secretion, which is classically dependent on increases in intracellular ionized calcium ([Ca2+]i). Indeed, increases in [Ca2+]i are essential for phagosome-granule (lysosome) fusion in neutrophils and for lysosomal fusion events that mediate host cell invasion by Trypanosoma cruzi trypomastigotes. Since several intracellular pathogens survive in macrophage phagosomes that do not fuse with lysosomes, we examined the regulation of phagosome-lysosome fusion in macrophages. Macrophages (M phi) were treated with 12.5 microM bis-(2-amino-S-methylphenoxy) ethane-N,N,N',N',-tetraacetic acid tetraacetoxymethyl ester (MAPT/AM), a cell-permeant calcium chelator which reduced resting cytoplasmic [Ca2+]; from 80 nM to < or = 20 nM and completely blocked increases in [Ca2+]i in response to multiple stimuli, even in the presence of extracellular calcium. Subsequently, M phi phagocytosed serum-opsonized zymosan, staphylococci, or Mycobacterium bovis. Microbes were enumerated by 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI) staining, and phagosome-lysosome fusion was scored using both lysosome-associated membrane protein (LAMP-1) as a membrane marker and rhodamine dextran as a content marker for lysosomes. Confirmation of phagosome-lysosome fusion by electron microscopy validated the fluorescence microscopy findings. We found that phagosome-lysosome fusion in M phi occurs noramlly at very low [Ca2+]i (< or = 20 nM). Kinetic analysis showed that in M phi none of the steps leading from particle binding to eventual phagosome-lysosome fusion are regulated by [Ca2+]i in a rate-limiting way. Furthermore, confocal microscopy revealed no difference in the intensity of LAMP-1 immunofluorescence in phagolysosome membranes in calcium-buffered vs. control macrophages. We conclude that neither membrane recognition nor fusion events in the phagosomal pathway in macrophages are dependent on or regulated by calcium.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D009161 Mycobacterium A genus of gram-positive, aerobic bacteria. Most species are free-living in soil and water, but the major habitat for some is the diseased tissue of warm-blooded hosts. Mycobacteria
D010587 Phagocytosis The engulfing and degradation of microorganisms; other cells that are dead, dying, or pathogenic; and foreign particles by phagocytic cells (PHAGOCYTES). Phagocytoses
D010588 Phagosomes Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material. Phagolysosomes,Phagolysosome,Phagosome
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal

Related Publications

S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
July 1980, Nature,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
April 1981, The Journal of experimental medicine,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
April 1986, Biochemical Society transactions,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
June 1980, The Journal of cell biology,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
June 1988, Journal of leukocyte biology,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
January 1993, Methods in enzymology,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
July 1981, The Journal of experimental medicine,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
September 1996, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
February 1987, Journal of leukocyte biology,
S Zimmerli, and M Majeed, and M Gustavsson, and O Stendahl, and D A Sanan, and J D Ernst
March 1990, Nihon saikingaku zasshi. Japanese journal of bacteriology,
Copied contents to your clipboard!