Visualization of the subsarcolemmal cytoskeleton network of mouse skeletal muscle cells by en face views and application to immunoelectron localization of dystrophin. 1995

C Berthier, and J Amsellem, and S Blaineau
Laboratoire de Physiologie des Eléments Excitables, URA CNRS 180, Université Claude Bernard Lyon I, Villeurbanne, France.

The ultrastructural organization of the highly interconnected filamentous network underneath the sarcolemma as well as the role played by the muscle protein dystrophin within this cytoskeleton remain yet unclear. More accurate information has been obtained by using a method which provides three-dimensional en face views of large membrane areas applied to mouse cultured myotubes and isolated adult skeletal muscle fibres. Two levels have been distinguished in the cytoskeleton underlying the sarcolemma: the submembranous level, partly integrated into the membrane, and the cortical level, invading the proximal cytoplasmic space. Few differences have been found between the membrane cytoskeletons of myotubes issued from 14-day-old cultures and those of adult fibres. The comparison was done with cells where dystrophin is missing (mdx mouse muscle): surprisingly, the lack of dystrophin does not induce obvious or dramatic ultrastructural disorganization, either in the cortical cytoskeletal network or in the submembranous one. Immunogold labelling of either the central-rod or the C-terminal domain of dystrophin is not located among the cortical network. This study provides additional data on the spatial ordering of subsarcolemmal cytoskeletal elements: dystrophin does not appear as a filamentous structure entirely located among subsarcolemmal cytoskeleton but seems partly embedded in membranous material.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012508 Sarcolemma The excitable plasma membrane of a muscle cell. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Sarcolemmas
D016189 Dystrophin A muscle protein localized in surface membranes which is the product of the Duchenne/Becker muscular dystrophy gene. Individuals with Duchenne muscular dystrophy usually lack dystrophin completely while those with Becker muscular dystrophy have dystrophin of an altered size. It shares features with other cytoskeletal proteins such as SPECTRIN and alpha-actinin but the precise function of dystrophin is not clear. One possible role might be to preserve the integrity and alignment of the plasma membrane to the myofibrils during muscle contraction and relaxation. MW 400 kDa.
D016253 Microscopy, Immunoelectron Microscopy in which the samples are first stained immunocytochemically and then examined using an electron microscope. Immunoelectron microscopy is used extensively in diagnostic virology as part of very sensitive immunoassays. Immunoelectron Microscopy,Microscopy, Immuno-Electron,Immuno-Electron Microscopies,Immuno-Electron Microscopy,Immunoelectron Microscopies,Microscopies, Immuno-Electron,Microscopies, Immunoelectron,Microscopy, Immuno Electron
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

C Berthier, and J Amsellem, and S Blaineau
December 1992, The Journal of cell biology,
C Berthier, and J Amsellem, and S Blaineau
August 1998, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
C Berthier, and J Amsellem, and S Blaineau
January 1997, Journal of neuropathology and experimental neurology,
C Berthier, and J Amsellem, and S Blaineau
January 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences,
C Berthier, and J Amsellem, and S Blaineau
October 1997, Biology of the cell,
C Berthier, and J Amsellem, and S Blaineau
June 1991, FEBS letters,
C Berthier, and J Amsellem, and S Blaineau
February 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
C Berthier, and J Amsellem, and S Blaineau
February 1987, Muscle & nerve,
Copied contents to your clipboard!