Characterization of a depolarizing dopamine response in a vertebrate neuronal somatic cell hybrid. 1977

P R Myers, and D R Livengood, and W Shain

The physiology and pharmacology of a depolarizing dopamine response was studied in the vertebrate neuronal somatic cell hybrid TCX11. The average resting membrane potential was -50 mV (S.D.=+/-7) with a membrane resistance of 40.5 mOhms (S.D.=+/-8) as determined from intracellular recordings. Depolarizing current pulses did not elicit an action potential. Cells displayed a linear current-voltage relationship when artificially depolarized up to +30 mV. Iontophoretically applied dopamine elicited a depolarizing response with a conductance increase and a reversal potential of -15 mV (S.D.=+/-4.7). Experiments altering medium ion concentrations demonstrated the conductance increase was to sodium and most likely potassium. The dopamine agonist ET495 (Piribedil) and the analogue epinine mimicked dopamine, while closely related biogenic amines, with the exception of noradrenaline, elicited no response. Apomorphine also elicited a depolarizing response but was much less efficacious than Piribedil. Noradrenaline was less potent than dopamine and appeared to act at the dopamine receptor. Methylation (3-methoxytyramine) or absence of the 3-hydroxy group (tyramine) of dopamine resulted in total loss of activity. The dopamine antagonists chlorpromazine, trifluoperazine, promazine, and bulbocapnine reversibly blocked the response to dopamine at medium concentrations less than 5 micronM. The adrenergic antagonist phentolamine blocked the response while phenoxybenzamine only reduced the response at higher concentrations. The acetylcholine antagonists alpha-bungarotoxin, hexamethonium, and scopolamine did not block the dopamine response. Both d-tubocurarine and atropine acted as antagonists. Collectively, these results demonstrate the presence of a receptor on a cultured cell line that is specific for dopamine, mediates a depolarizing and conductance increase response to dopamine, and displays the pharmacology most closely associated with dopamine receptors.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid

Related Publications

P R Myers, and D R Livengood, and W Shain
January 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience,
P R Myers, and D R Livengood, and W Shain
January 1979, Journal of cellular physiology,
P R Myers, and D R Livengood, and W Shain
August 1974, International journal of radiation biology and related studies in physics, chemistry, and medicine,
P R Myers, and D R Livengood, and W Shain
February 2000, Genomics,
P R Myers, and D R Livengood, and W Shain
January 2000, Mammalian genome : official journal of the International Mammalian Genome Society,
P R Myers, and D R Livengood, and W Shain
September 1998, Nature neuroscience,
P R Myers, and D R Livengood, and W Shain
March 1981, British journal of pharmacology,
P R Myers, and D R Livengood, and W Shain
May 1984, Experimental cell research,
P R Myers, and D R Livengood, and W Shain
May 2001, Current protocols in human genetics,
Copied contents to your clipboard!