Characterization of an ATP-modulated large conductance Ca(2+)-activated K+ channel present in rat cortical neurones. 1995

K Lee, and I C Rowe, and M L Ashford
Department of Pharmacology, University of Cambridge, UK.

1. Single channel current recordings were used to study the characteristics of a large conductance Ca(2+)-activated K+ (BKCa) channel present in neurones acutely dissociated from the rat motor cortex. Application of ATP to the intracellular surface of excised inside-out patches produced a large, concentration-dependent increase in BKCa channel activity. 2. This ATP-mediated activation was dependent upon the presence of Mg2+ in the intracellular bathing solution and was diminished by the phosphatases 2,3-butanedione monoxime (BDM) or alkaline phosphatase and by the protein kinase inhibitors staurosporine, H-7 and PKI. 3. ADP stimulated BKCa channel activity in a Mg(2+)-dependent manner, an action also inhibited by the concomitant application of PKI or BDM. The effect of ADP was reduced by application of hexokinase and glucose or by application of the adenylate kinase inhibitor Ap5A. 4. Of other nucleotides tested, only CTP consistently activated BKCa channel activity. 5. Using the cell-attached configuration, bath application of forskolin or dibutyryl cAMP stimulated BKCa channel activity. 6. It is concluded that BKCa channel activity in the rat motor cortex is subject to modulation by the activity of a closely associated kinase. The ability of cAMP activators to stimulate BKCa channel activity in the intact cell suggests that this system may be of physiological importance.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D009044 Motor Cortex Area of the FRONTAL LOBE concerned with primary motor control located in the dorsal PRECENTRAL GYRUS immediately anterior to the central sulcus. It is comprised of three areas: the primary motor cortex located on the anterior paracentral lobule on the medial surface of the brain; the premotor cortex located anterior to the primary motor cortex; and the supplementary motor area located on the midline surface of the hemisphere anterior to the primary motor cortex. Brodmann Area 4,Brodmann Area 6,Brodmann's Area 4,Brodmann's Area 6,Premotor Cortex and Supplementary Motor Cortex,Premotor and Supplementary Motor Cortices,Anterior Central Gyrus,Gyrus Precentralis,Motor Area,Motor Strip,Precentral Gyrus,Precentral Motor Area,Precentral Motor Cortex,Premotor Area,Premotor Cortex,Primary Motor Area,Primary Motor Cortex,Secondary Motor Areas,Secondary Motor Cortex,Somatic Motor Areas,Somatomotor Areas,Supplementary Motor Area,Area 4, Brodmann,Area 4, Brodmann's,Area 6, Brodmann,Area 6, Brodmann's,Area, Motor,Area, Precentral Motor,Area, Premotor,Area, Primary Motor,Area, Secondary Motor,Area, Somatic Motor,Area, Somatomotor,Area, Supplementary Motor,Brodmann's Area 6s,Brodmanns Area 4,Brodmanns Area 6,Central Gyrus, Anterior,Cortex, Motor,Cortex, Precentral Motor,Cortex, Premotor,Cortex, Primary Motor,Cortex, Secondary Motor,Cortices, Secondary Motor,Gyrus, Anterior Central,Gyrus, Precentral,Motor Area, Precentral,Motor Area, Primary,Motor Area, Secondary,Motor Area, Somatic,Motor Areas,Motor Cortex, Precentral,Motor Cortex, Primary,Motor Cortex, Secondary,Motor Strips,Precentral Motor Areas,Precentral Motor Cortices,Premotor Areas,Primary Motor Areas,Primary Motor Cortices,Secondary Motor Area,Secondary Motor Cortices,Somatic Motor Area,Somatomotor Area,Supplementary Motor Areas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010744 Phosphoric Monoester Hydrolases A group of hydrolases which catalyze the hydrolysis of monophosphoric esters with the production of one mole of orthophosphate. Phosphatase,Phosphatases,Phosphohydrolase,Phosphohydrolases,Phosphomonoesterase,Phosphomonoesterases,Phosphoric Monoester Hydrolase,Hydrolase, Phosphoric Monoester,Hydrolases, Phosphoric Monoester,Monoester Hydrolase, Phosphoric
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation

Related Publications

K Lee, and I C Rowe, and M L Ashford
December 2000, Pflugers Archiv : European journal of physiology,
K Lee, and I C Rowe, and M L Ashford
September 1997, The Journal of general physiology,
K Lee, and I C Rowe, and M L Ashford
August 2001, The Japanese journal of physiology,
K Lee, and I C Rowe, and M L Ashford
October 2009, Biochemical and biophysical research communications,
K Lee, and I C Rowe, and M L Ashford
November 2009, Biochemical and biophysical research communications,
K Lee, and I C Rowe, and M L Ashford
January 1986, British journal of pharmacology,
K Lee, and I C Rowe, and M L Ashford
April 1999, Annals of the New York Academy of Sciences,
K Lee, and I C Rowe, and M L Ashford
March 1998, The Journal of membrane biology,
Copied contents to your clipboard!