Perinatal development of action potential propagation in cat rubrospinal axons. 1995

W J Song, and K Okawa, and M Kanda, and F Murakami
Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Japan.

1. The development of action potential conduction was studied by intracellular recording of antidromic spikes in cat rubrospinal cells. 2. The distance between the C1 and L1 spinal segments increased linearly from 5.6 cm at embryonic day (E) 59 to 9.8 cm at postnatal day (P) 30. 3. The conduction time from the C1 segment to the rubrospinal neuron soma, estimated from antidromic spike latency evoked by stimulation of the C1 segment, decreased rapidly prior to birth and then slowly thereafter. This coincided with a reduction in conduction time variation between cells. 4. The conduction time from the red nucleus to the L1 segment followed a similar time course during development. The conduction time reached the adult value by P30, at which time the spinal cord is only half the adult length. 5. The conduction velocity between the C1 and L1 segments increased monotonically between E59 and P30, from a low of 1 m s-1 to a maximum of 34 m s-1. 6. The rise time of rubrospinal neuron somadendritic spikes followed a developmental time course similar to that for conduction time. 7. Myelination of rubrospinal axons, as judged by the presence of myelinated segment spikes, began to occur prior to E59. 8. These findings suggest that development of action potential propagation in rubrospinal cells can be divided into an early and a late stage: conduction time reaches the adult value during the early stage, i.e. by the first postnatal month, and is maintained during the late stage. We propose that myelination, axon diameter increase and maturation of membrane properties act to reduce conduction time to adult values during the early stage, while a proportional increase in fibre diameter with axonal length results in a constant conduction time during the late stage.

UI MeSH Term Description Entries
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D012012 Red Nucleus A pinkish-yellow portion of the midbrain situated in the rostral mesencephalic tegmentum. It receives a large projection from the contralateral half of the CEREBELLUM via the superior cerebellar peduncle and a projection from the ipsilateral MOTOR CORTEX. Nucleus Ruber,Nucleus, Red
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W J Song, and K Okawa, and M Kanda, and F Murakami
November 1977, Experimental brain research,
W J Song, and K Okawa, and M Kanda, and F Murakami
October 2019, PLoS computational biology,
W J Song, and K Okawa, and M Kanda, and F Murakami
November 2023, Bio-protocol,
W J Song, and K Okawa, and M Kanda, and F Murakami
May 2007, Journal of neurophysiology,
W J Song, and K Okawa, and M Kanda, and F Murakami
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
W J Song, and K Okawa, and M Kanda, and F Murakami
April 2008, The Journal of physiology,
W J Song, and K Okawa, and M Kanda, and F Murakami
July 2008, European biophysics journal : EBJ,
W J Song, and K Okawa, and M Kanda, and F Murakami
June 1982, Brain research,
W J Song, and K Okawa, and M Kanda, and F Murakami
May 2007, PLoS computational biology,
W J Song, and K Okawa, and M Kanda, and F Murakami
March 1983, The Journal of physiology,
Copied contents to your clipboard!