The development of monamine-containing neurons in the brain and spinal cord of the salamander, Ambystoma mexicanum. 1977

T J Sims

The distribution of monoamine-containing neurons in the CNS of the developing and adult axolotl, Ambystoma mexicanum, has been investigated using the histochemical fluorescence technique of Falck and Hillarp combined with microspectrofluorimetry. The earliest catecholamine-containing neurons to be detected are located in the ventral ependymal zone of the spinal cord at the time of hatching (Stage 41). Between stages 43 and 46, catecholamine fluorescence can be detected in neurons in the following regions: nucleus preopticus, the hypothalamic-infundibular region, and the brain stem reticular formation. 5-HT-containing neurons are only observed in the midbrain raphe region and are first detected at stage 44. In contrast to these early monoamine fluorescing groups, catecholamine-containing neurons are not routinely detectable in the nucleus interpeduncularis until six months of age. All monoamine-containing neuronal groups detected in developing axolotls are also present in both sexes of the adult. However, the fluorescence intensity is less in monoamine-containing neurons observed in adults than in early developing subjects. All catecholamine-containing neuronal groups, with the exception of those located in the midbrain region (nucleus interpeduncularis, reticular zone) have fluorescent processes that contact the cerebrospinal fluid (CSF). The presence of CSF-contacting processes in the hypothalamic and spinal cord regions suggest that the CSF may act as a medium through which bioactive substances are transported from one brain region to another. Intense catecholamine fluorescence is observed in cells of the notochord prior to the detection of the monoamine-containing neurons in the CNS. A possible involvement of catecholamines in the inductive effects of the notochord during development is discussed.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000557 Ambystoma A genus of the Ambystomatidae family. The best known species are the axolotl AMBYSTOMA MEXICANUM and the closely related tiger salamander Ambystoma tigrinum. They may retain gills and remain aquatic without developing all of the adult characteristics. However, under proper changes in the environment they metamorphose. Amblystoma,Ambystoma tigrinum,Tiger Salamander,Amblystomas,Ambystomas,Salamander, Tiger,Salamanders, Tiger,Tiger Salamanders
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

T J Sims
January 1973, Zeitschrift fur experimentelle Chirurgie,
T J Sims
January 1965, Zeitschrift fur mikroskopisch-anatomische Forschung,
T J Sims
January 1982, Cellular and molecular biology,
T J Sims
April 1985, The Journal of experimental zoology,
Copied contents to your clipboard!