The müllerian inhibitor and mammalian sexual development. 1995

R R Behringer
Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA.

The elegant embryological experiments of Jost demonstrated the existence of a foetal testicular factor that is required to cause the regression of the müllerian duct system, the anlagen of the uterus, oviducts and upper portion of the vagina, during male sexual development. The müllerian inhibitor currently known as müllerian-inhibiting substance (MIS) or anti-müllerian hormone (AMH), is a member of the transforming growth factor-beta (TGF-beta) family of growth and differentiation factors. The genetic manipulation of the mouse germline has lead to the generation of animal models for MIS function. Female transgenic mice that chronically express MIS during embryogenesis are born without a uterus or oviducts and their ovaries lose germ cells and degenerate, recapitulating the phenotype of the bovine freemartin. Some male transgenic mice from very high MIS-expressing lines are feminized, suggesting alterations in androgen biosynthesis. Male mice homozygous for a targeted mutation of the MIS gene develop as male pseudohermaphrodites with both male (testes and Wolffian duct-derived) and female (müllerian duct-derived) reproductive organs. Most are infertile because the development of two reproductive systems physically blocks the exit of sperm from these males. In addition, Leydig cell hyperplasia is detected in a proportion of these males and in one case a Leydig cell tumour was found. Recently, a gene encoding a TGF-beta family type II Ser/Thr kinase membrane-bound receptor has been isolated that is expressed in both male and female gonads and in the mesenchyme surrounding the müllerian ducts during embryogenesis. These findings suggest that MIS-mediated müllerian duct regression occurs indirectly through mesenchymal tissue. A targeted mutation of this receptor has been established in the mouse germline. Mice homozygous for this receptor mutation should be useful in understanding the MIS signalling pathway for müllerian duct regression and gonadal function.

UI MeSH Term Description Entries
D008297 Male Males
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009095 Mullerian Ducts A pair of ducts near the WOLFFIAN DUCTS in a developing embryo. In the male embryo, they degenerate with the appearance of testicular ANTI-MULLERIAN HORMONE. In the absence of anti-mullerian hormone, mullerian ducts give rise to the female reproductive tract, including the OVIDUCTS; UTERUS; CERVIX; and VAGINA. Muellerian Duct,Mullerian Duct,Muellerian Ducts,Duct, Muellerian,Duct, Mullerian,Ducts, Muellerian,Ducts, Mullerian
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010053 Ovary The reproductive organ (GONADS) in female animals. In vertebrates, the ovary contains two functional parts: the OVARIAN FOLLICLE for the production of female germ cells (OOGENESIS); and the endocrine cells (GRANULOSA CELLS; THECA CELLS; and LUTEAL CELLS) for the production of ESTROGENS and PROGESTERONE. Ovaries
D011986 Receptors, Somatotropin Cell surface proteins that bind GROWTH HORMONE with high affinity and trigger intracellular changes influencing the behavior of cells. Activation of growth hormone receptors regulates amino acid transport through cell membranes, RNA translation to protein, DNA transcription, and protein and amino acid catabolism in many cell types. Many of these effects are mediated indirectly through stimulation of the release of somatomedins. Growth Hormone Receptors,Receptors, Growth Hormone,Somatomammotropin Receptors,Somatotropin Receptors,Growth Hormone Receptor,Receptor, Growth Hormone,Receptors, Somatomammotropin,Somatomammotropin Receptor,Somatotropin Receptor,Hormone Receptor, Growth,Hormone Receptors, Growth
D005260 Female Females
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006131 Growth Inhibitors Endogenous or exogenous substances which inhibit the normal growth of human and animal cells or micro-organisms, as distinguished from those affecting plant growth ( Cell Growth Inhibitor,Cell Growth Inhibitors,Growth Inhibitor,Growth Inhibitor, Cell,Growth Inhibitors, Cell,Inhibitor, Cell Growth,Inhibitor, Growth,Inhibitors, Cell Growth,Inhibitors, Growth

Related Publications

R R Behringer
February 2004, Nihon rinsho. Japanese journal of clinical medicine,
R R Behringer
September 2019, International journal of molecular sciences,
R R Behringer
January 2009, Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation,
R R Behringer
January 2007, Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation,
R R Behringer
November 1997, Nihon rinsho. Japanese journal of clinical medicine,
R R Behringer
January 2024, Zhonghua er ke za zhi = Chinese journal of pediatrics,
R R Behringer
January 2005, The International journal of developmental biology,
R R Behringer
October 1986, Molecular and cellular endocrinology,
Copied contents to your clipboard!