Photochemistry of type I acid-soluble calf skin collagen: dependence on excitation wavelength. 1995

J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
Department of Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA.

Although previous studies have demonstrated that the predominant photochemistry of type I collagen under 254 nm irradiation may be attributed either to direct absorption by tyrosine/phenylalanine or to peptide bonds, direct collagen photochemistry via solar UV wavelengths is much more likely to involve several age- and tissue-related photolabile collagen fluorophores that absorb in the latter region. In this study, we compare and contrast results obtained from irradiation of a commercial preparation of acid-soluble calf skin type I collagen in solution with UVC (primarily 254 nm), UVA (335-400 nm) and broad-band solar-simulating radiation (SSR; 290-400 nm). Excitation spectroscopy and analysis of photochemically induced disappearance of fluorescence (fluorescence fading) indicates that this preparation has at least four photolabile fluorescent chromophores. In addition to tyrosine and L-3,4-dihydroxyphenylalanine, our sample contains two other fluorophores. Chromophore I, with emission maximum at 360 nm, appears to be derived from interacting aromatic moieties in close mutual proximity. Chromophore II, with broad emission at 430-435 nm, may be composed of one or more age-related molecules. Collagen fluorescence fading kinetics are sensitive to excitation wavelength and to conformation. Under UVC, chromophore I fluorescence disappears with second-order kinetics, indicating a reaction between two proximal like molecules. Adherence to second-order kinetics is abrogated by prior denaturation of the collagen sample. A new broad, weak fluorescence band at 400-420 nm, attributable to dityrosine, forms under UVC, but not under solar radiation. This band is photolabile to UVA and UVB wavelengths.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D012995 Solubility The ability of a substance to be dissolved, i.e. to form a solution with another substance. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Solubilities
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray

Related Publications

J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
May 1965, The Biochemical journal,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
October 1996, Biochimica et biophysica acta,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
May 1962, The Biochemical journal,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
May 1962, The Biochemical journal,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
January 1983, Comparative biochemistry and physiology. B, Comparative biochemistry,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
January 1978, Biochemical Society transactions,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
May 1983, Collagen and related research,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
January 1983, Biochemical pharmacology,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
June 1960, Archives of biochemistry and biophysics,
J M Menter, and G D Williamson, and K Carlyle, and C L Moore, and I Willis
September 1967, Zeitschrift fur Immunitatsforschung, Allergie und klinische Immunologie,
Copied contents to your clipboard!