Effects of chloride ion substitutes and chloride channel blockers on the transient outward current in rat ventricular myocytes. 1996

T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
Laboratoire de Cardiologie Moléculaire et Cellulaire, CNRS URA 1159, Hôpital Marie Lannelongue, Le Plessis Robinson, France.

The Cai(2+)-insensitive transient outward current, ilo was studied at 20-24 degrees C in rat ventricular myocytes with the whole cell recording patch-clamp technique. The current was recorded before and after replacement of chloride by methanesulfonate or aspartate or in the absence and the presence of chloride channel blockers, SITS or 9-anthracene carboxylic acid. In control conditions (in the presence of external divalent cations, Ca2+ and Cd2+, Cd2+ being used to suppress Ca2+ current), ilo inactivation was composed of a fast and a slow component. When methanesulfonate was substituted for external Cl-, the peak current decreased to a variable extent, but the inactivation of the remaining current was still composed of a fast and a slow component. In contrast, the inactivation of the difference current was well fitted by a single exponential. The time to peak of the difference current was shorter than that of the current recorded either in the absence or the presence of methanesulfonate. Both activation- and steady-state inactivation-voltage curves were either unchanged (n = 4) or shifted by a few mV (5.5 mV, n = 14) towards positive potentials when methanesulfonate was substituted for Cl-. The current remaining in methanesulfonate reversed at potentials closed to EK. The difference current was composed of a peak and a steady-state component. The peak was suppressed by 4-aminopyridine whereas the steady-state component was not. The peak was also suppressed when pipette solution contained Cs+ instead of K+ but was still present when the Hepes concentration in both external and pipette media was increased 5-fold (50 mM vs. 10 mM). When aspartate was substituted for Cl- or when 2 mM SITS was added to the external solution (in the absence of Ca2+ and Cd2+ because aspartate is known to chelate Ca2+ ions and possibly other divalent cations), ilo was reduced to a similar extent in the two cases and the difference current was composed of a peak (inactivation fitted by a single exponential) and a steady-state component. The SITS-sensitive transient current reversed at a potential close to ECl. When 5 mM 9-anthracene carboxylic acid was added to external solution (in the presence of Ca2+ and Cd2+), the peak of the difference current was similar to that observed when Cl- was substituted by methanesulfonate. The difference current resulting from the substitution of methanesulfonate for chloride was not changed when the pipette solution contained either 50 mM EGTA (instead of 5 mM) or 10 mM EGTA and 10 mM BAPTA. The nature of Cs(+)- and 4-aminopyridine-sensitive transient outward current suppressed by chloride ion substitutes or chloride channel blockers is discussed.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008698 Mesylates Organic salts or esters of methanesulfonic acid. Mesilate,Methanesulfonates,Mesilates,Mesylate,Methylenesulfonates
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000873 Anthracenes A group of compounds with three aromatic rings joined in linear arrangement.
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS

Related Publications

T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
May 2011, Zhonghua xin xue guan bing za zhi,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
April 1999, Sheng li xue bao : [Acta physiologica Sinica],
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
September 2000, British journal of pharmacology,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
September 1993, Cardiovascular research,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
July 2002, Acta pharmacologica Sinica,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
November 2001, The Journal of physiology,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
March 2005, General physiology and biophysics,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
January 1997, Yao xue xue bao = Acta pharmaceutica Sinica,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
November 1989, The American journal of physiology,
T Lefevre, and I A Lefevre, and A Coulombe, and E Coraboeuf
October 1993, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!