Cardiac cells control transmitter release and calcium homeostasis in sympathetic neurons cultured from embryonic chick. 1995

A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.

1. The contribution of target cells in controlling the functional properties of sympathetic neurons was investigated using pure neuronal cultures and co-cultures of neurons with their physiological target cells. 2. Chick embryo sympathetic neurons cultured alone exhibited maximal elevation of cytosolic free Ca2+ ([Ca2+]i) and release of tritiated noradrenaline ([3H]NA) when given ten stimulating pulses at 1 Hz but not at 10 Hz, yielding a negative frequency-release response. Stimulation-evoked release was only slightly enhanced by the K+ channel blocker tetraethylammonium (TEA, 10 mM). 3. When sympathetic neurons were co-cultured with cardiac cells of the chick embryo, electrically stimulated transmitter release and neuronal [Ca2+]i were reduced by 3- to 5-fold. Co-cultured neurons had a positive stimulation frequency--[3H]NA release response and 5- to 7-fold facilitation of release by TEA. 4. Voltage-clamped Ca2+ current density was decreased from 0.61 +/- 0.13 pA micron-2 in neurons alone to 0.19 +/- 0.03 pA micron-2 in co-cultured neurons. 5. Neonatal rat superior cervical ganglion (SCG) neurons were also relatively insensitive to TEA when cultured alone, but [3H]NA release was greatly facilitated by TEA when tested in SCG neurons co-cultured with rat neonatal cardiac myocytes. 6. The cardiac cell-induced changes in Ca2+ handling and release properties were produced within 24 h by sympathetic neuroeffector cells, but not by skeletal muscle cells or sensory neurons, and did not occur spontaneously in neurons grown alone for up to 6 days. 7. The frequency and TEA responses of neurons grown with cardiac cells are characteristic of responses seen in sympathetic neuroeffector organs. We conclude that physiological targets play a crucial role in development of normal transmitter-release properties by controlling Ca2+ homeostasis in sympathetic neurons.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
September 1994, Naunyn-Schmiedeberg's archives of pharmacology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
April 1973, The Journal of cell biology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
February 1997, Progress in neurobiology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
January 1985, Journal de physiologie,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
December 1988, Neuroscience,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
November 1997, The Journal of physiology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
June 1987, The Journal of physiology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
October 1995, Naunyn-Schmiedeberg's archives of pharmacology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
September 1991, Naunyn-Schmiedeberg's archives of pharmacology,
A R Wakade, and D A Przywara, and S V Bhave, and V Mashalkar, and T D Wakade
December 1985, Federation proceedings,
Copied contents to your clipboard!