Effect of human chorionic gonadotrophin on chloride current in human syncytiotrophoblasts in culture. 1995

L Cronier, and P Bois, and J C Hervé, and A Malassiné
Laboratoire de Physiologie Cellulaire, CNRS URA 1869, Université de Poitiers, France.

Human trophoblast differentiates in vivo and in vitro by the fusion of cytotrophoblastic cells to form syncytiotrophoblasts. A large amount of human chorionic gonadotrophin (hCG) is produced by the syncytiotrophoblasts, which express hCG luteinizing hormone (LH) receptors. Since recent investigations with electrophysiological techniques support the conclusion that hormonal effects can be mediated by modulations of the membrane ionic conductances of the cells, a perforated patch-clamp technique was used to investigate the possible presence of a chloride current evoked by hCG. The perifusion of hCG (500 mIU/ml) activated a time-independent current, which presents a linear current-voltage (I/V) relationship in symmetrical chloride concentrations. The reversal potential was -1.8 mV with 142 mM Cl- external solution and 134 mM cl- internal solution. This reversal potential shifted with changes in the transmembrane Cl- gradient. Moreover, this hCG-induced current was sensitive to 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) (50 microM), to diphenylalamine-2-carboxylic acid (DPC) (0.5 mM) and to 9-AC (1 mM), three known chloride channel blockers. These results confirm the autocrine action of hCG in the physiology of the trophoblast.

UI MeSH Term Description Entries
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D014327 Trophoblasts Cells lining the outside of the BLASTOCYST. After binding to the ENDOMETRIUM, trophoblasts develop into two distinct layers, an inner layer of mononuclear cytotrophoblasts and an outer layer of continuous multinuclear cytoplasm, the syncytiotrophoblasts, which form the early fetal-maternal interface (PLACENTA). Cytotrophoblasts,Syncytiotrophoblasts,Trophoblast,Cytotrophoblast,Syncytiotrophoblast
D015726 Giant Cells Multinucleated masses produced by the fusion of many cells; often associated with viral infections. In AIDS, they are induced when the envelope glycoprotein of the HIV virus binds to the CD4 antigen of uninfected neighboring T4 cells. The resulting syncytium leads to cell death and thus may account for the cytopathic effect of the virus. Giant Cells, Multinucleated,Multinucleated Giant Cells,Polykaryocytes,Syncytium,Syncytia,Cell, Giant,Cell, Multinucleated Giant,Cells, Giant,Cells, Multinucleated Giant,Giant Cell,Giant Cell, Multinucleated,Multinucleated Giant Cell,Polykaryocyte
D018118 Chloride Channels Cell membrane glycoproteins that form channels to selectively pass chloride ions. Nonselective blockers include FENAMATES; ETHACRYNIC ACID; and TAMOXIFEN. CaCC,Calcium-Activated Chloride Channel,Chloride Ion Channel,Chlorine Channel,Ion Channels, Chloride,CaCCs,Calcium-Activated Chloride Channels,Chloride Channel,Chloride Ion Channels,Chlorine Channels,Ion Channel, Chloride,Calcium Activated Chloride Channel,Calcium Activated Chloride Channels,Channel, Calcium-Activated Chloride,Channel, Chloride,Channel, Chloride Ion,Channel, Chlorine,Channels, Calcium-Activated Chloride,Channels, Chloride,Channels, Chloride Ion,Channels, Chlorine,Chloride Channel, Calcium-Activated,Chloride Channels, Calcium-Activated

Related Publications

L Cronier, and P Bois, and J C Hervé, and A Malassiné
June 1984, East African medical journal,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
January 1974, The Journal of endocrinology,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
September 1976, The Medical journal of Australia,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
April 1948, British medical journal,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
September 1979, Acta endocrinologica,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
January 1975, Journal of reproduction and fertility,
L Cronier, and P Bois, and J C Hervé, and A Malassiné
August 1995, Human reproduction (Oxford, England),
L Cronier, and P Bois, and J C Hervé, and A Malassiné
August 1990, Human reproduction (Oxford, England),
Copied contents to your clipboard!