A humanized, bispecific immunoadhesin-antibody that retargets CD3+ effectors to kill HIV-1-infected cells. 1995

S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
Department of Recovery Sciences, Genentech, Inc., S. San Francisco, CA 94080, USA.

We have developed a humanized, bispecific immunoadhesin-antibody (BsIAb) that targets and kills HIV-infected cells. Comprised of CD4-IgG and humanized anti-CD3-IgG, this BsIAb is bifunctional. First, in targeting, it exploits the natural affinity of CD4 for gp120 to target the BsIAb to HIV-infected cells, and second, it recruits and activates, through its anti-CD3 moiety, cytotoxic T lymphocytes (CTL) to lyse target cells in a non-MHC restricted manner. To produce purified BsIAb from supernantants of transfected mammalian cells, we designed a three-step recovery scheme based on the structural elements of this heterotrimeric protein. The ability of purified BsIAb to specifically lyse HIV-infected target cells was demonstrated using CTL from two different sources: whole peripheral blood lymphocyte (PBL) fractions and pure CTL preparations. In contrast, a human anti-gp120 antibody mediated lysis of HIV-infected target cells only with PBL fractions and not with purified CTL. Moreover, lysis observed in the presence of the human anti-gp120 antibody was completely blocked in the presence of human serum (which competes for Fc gamma receptor binding), whereas BsIAb-mediated lysis of target cells was not affected. We measured the monovalent affinities of BsIAb for HIV-gp120 on infected cells and for CD3 epsilon on CTL. Relative to the bivalent parent molecules, CD4/gp120 affinity in the BsIAb is unchanged, whereas anti-CD3/CD3 is substantially decreased. We further demonstrated by fluorescence microscopy that physical association of CD3+ cells with gp120-expressing cells occurs only in the presence of BsIAb. Thus, the cytocidal activity of BsIAb in the presence of serum reflects its unique ability to recruit CTL as effector cells and highlights a potentially important advantage of this type of construct over antibodies for HIV-directed therapy.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003601 Cytotoxicity Tests, Immunologic The demonstration of the cytotoxic effect on a target cell of a lymphocyte, a mediator released by a sensitized lymphocyte, an antibody, or complement. AHG-CDC Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Tests,Microcytotoxicity Tests,Anti Human Globulin Complement Dependent Cytotoxicity Tests,Anti-Human Globulin Complement-Dependent Cytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Test,Antiglobulin-Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunologic,Cytotoxicity Tests, Anti-Human Globulin Complement-Dependent,Cytotoxicity Tests, Immunological,Immunologic Cytotoxicity Test,Immunologic Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin-Augmented,Lymphocytotoxicity Tests, Antiglobulin-Augmented,Microcytotoxicity Test,AHG CDC Tests,AHG-CDC Test,Anti Human Globulin Complement Dependent Cytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Test,Antiglobulin Augmented Lymphocytotoxicity Tests,Cytotoxicity Test, Immunological,Cytotoxicity Tests, Anti Human Globulin Complement Dependent,Immunological Cytotoxicity Test,Immunological Cytotoxicity Tests,Lymphocytotoxicity Test, Antiglobulin Augmented,Lymphocytotoxicity Tests, Antiglobulin Augmented
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000915 Antibody Affinity A measure of the binding strength between antibody and a simple hapten or antigen determinant. It depends on the closeness of stereochemical fit between antibody combining sites and antigen determinants, on the size of the area of contact between them, and on the distribution of charged and hydrophobic groups. It includes the concept of "avidity," which refers to the strength of the antigen-antibody bond after formation of reversible complexes. Affinity, Antibody,Antibody Avidity,Avidity, Antibody,Affinities, Antibody,Antibody Affinities,Antibody Avidities,Avidities, Antibody
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000920 Antibody-Dependent Cell Cytotoxicity The phenomenon of antibody-mediated target cell destruction by non-sensitized effector cells. The identity of the target cell varies, but it must possess surface IMMUNOGLOBULIN G whose Fc portion is intact. The effector cell is a "killer" cell possessing Fc receptors. It may be a lymphocyte lacking conventional B- or T-cell markers, or a monocyte, macrophage, or polynuclear leukocyte, depending on the identity of the target cell. The reaction is complement-independent. ADCC,Cytotoxicity, Antibody-Dependent Cell,Cell Cytoxicity, Antibody-Dependent,Antibody Dependent Cell Cytotoxicity,Antibody-Dependent Cell Cytotoxicities,Antibody-Dependent Cell Cytoxicities,Antibody-Dependent Cell Cytoxicity,Cell Cytotoxicities, Antibody-Dependent,Cell Cytotoxicity, Antibody-Dependent,Cell Cytoxicities, Antibody-Dependent,Cell Cytoxicity, Antibody Dependent,Cytotoxicities, Antibody-Dependent Cell,Cytotoxicity, Antibody Dependent Cell,Cytoxicities, Antibody-Dependent Cell,Cytoxicity, Antibody-Dependent Cell

Related Publications

S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
January 2016, Medecine sciences : M/S,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
June 2018, The Journal of clinical investigation,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
November 2018, Scientific reports,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
January 2020, Frontiers in oncology,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
January 2024, Blood advances,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
February 1990, Journal of immunology (Baltimore, Md. : 1950),
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
July 2012, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
July 2019, Cancer research,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
September 2015, The Journal of allergy and clinical immunology,
S M Chamow, and D Zhang, and X Y Tan, and S M Mhatre, and S A Marsters, and D H Peers, and R A Byrn, and A Ashkenazi, and R P Junghans
April 2013, Leukemia,
Copied contents to your clipboard!