Multiple neuroepithelial tumors of different cell types--case report. 1995

T Akai, and S Takahashi, and M Sonobe, and K Sugita
Department of Neurosurgery, Mito National Hospital, Japan.

A 31-year-old male developed intramedullary tumors in the medulla oblongata and the upper cervical spinal cord. He was first admitted with tetraparesis. Magnetic resonance (MR) imaging revealed a low intensity mass lesion in the medulla oblongata. The tumor was removed and diagnosed as a pilocytic astrocytoma. Nine years later, he was readmitted with motor weakness and dysesthesia in the right arm. MR imaging revealed a mass lesion in the cervical cord. This tumor was removed and diagnosed histologically as ependymoma. We suggest that the displacement of primitive spongioblasts with subsequent differentiation resulted in an astrocytoma and an ependymoma in adjacent areas.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D009378 Neoplasms, Multiple Primary Two or more abnormal growths of tissue occurring simultaneously and presumed to be of separate origin. The neoplasms may be histologically the same or different, and may be found in the same or different sites. Neoplasms, Synchronous,Neoplasms, Synchronous Multiple Primary,Multiple Primary Neoplasms,Multiple Primary Neoplasms, Synchronous,Synchronous Multiple Primary Neoplasms,Synchronous Neoplasms,Multiple Primary Neoplasm,Neoplasm, Multiple Primary,Neoplasm, Synchronous,Primary Neoplasm, Multiple,Primary Neoplasms, Multiple,Synchronous Neoplasm
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004806 Ependymoma Glioma derived from EPENDYMOGLIAL CELLS that tend to present as malignant intracranial tumors in children and as benign intraspinal neoplasms in adults. It may arise from any level of the ventricular system or central canal of the spinal cord. Intracranial ependymomas most frequently originate in the FOURTH VENTRICLE and histologically are densely cellular tumors which may contain ependymal tubules and perivascular pseudorosettes. Spinal ependymomas are usually benign papillary or myxopapillary tumors. (From DeVita et al., Principles and Practice of Oncology, 5th ed, p2018; Escourolle et al., Manual of Basic Neuropathology, 2nd ed, pp28-9) Ependymoma, Myxopapillary,Ependymoma, Papillary,Anaplastic Ependymoma,Cellular Ependymoma,Clear Cell Ependymoma,Papillary Ependymoma,Anaplastic Ependymomas,Ependymoma, Anaplastic,Ependymomas,Ependymomas, Anaplastic,Ependymomas, Myxopapillary,Ependymomas, Papillary,Myxopapillary Ependymoma,Myxopapillary Ependymomas,Papillary Ependymomas
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

T Akai, and S Takahashi, and M Sonobe, and K Sugita
August 1986, Neurologia medico-chirurgica,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
February 1991, Neurologia medico-chirurgica,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
September 1990, Neurosurgery,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
March 2010, Nihon Hinyokika Gakkai zasshi. The japanese journal of urology,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
June 1995, No shinkei geka. Neurological surgery,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
January 1981, Neurosurgery,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
January 1950, Journal of the National Medical Association,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
July 1997, Hinyokika kiyo. Acta urologica Japonica,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
July 2005, Hinyokika kiyo. Acta urologica Japonica,
T Akai, and S Takahashi, and M Sonobe, and K Sugita
January 1994, Surgical neurology,
Copied contents to your clipboard!