Renal atrial natriuretic factor receptors in hamster cardiomyopathy. 1995

S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
Laboratory of Cardiovascular Biochemistry, Centre de Recherche Hótel-Dieu de Montréal, Université de Montréal, Quebec, Canada.

Hamsters with cardiomyopathy (CMO), an experimental model of congestive heart failure, display stimulated renin-angiotensin-aldosterone and enhanced sympathetic nervous activity, all factors that lead to sodium retention, volume expansion and subsequent elevation of plasma atrial natriuretic factor (ANF) by the cardiac atria. However, sodium and water retention persist in CMO, indicating hyporesponsiveness to endogenous ANF. These studies were undertaken to fully characterize renal ANF receptor subtypes in normal hamsters and to evaluate whether alterations in renal ANF receptors may contribute to renal resistance to ANF in cardiomyopathy. Transcripts of the guanylyl cyclase-A (GC-A) and guanylyl cyclase B (GC-B) receptors were detected by quantitative polymerase chain reaction (PCR) in renal cortex, and outer and inner medullas. Compared to normal controls, the cardiomyopathic hamster's GC-A mRNA was similar in cortex but significantly increased in outer and inner medulla. Levels of GC-B mRNA were not altered by the disease. On the other hand, competitive binding studies, autoradiography, and affinity cross-linking demonstrated the absence of functional GC-B receptors in the kidney glomeruli and inner medulla. Also, C-type natriuretic peptide (CNP), the natural ligand for the GC-B receptors, failed to stimulate glomerular production of its second messenger cGMP. In CMO, sodium and water excretion were significantly reduced despite elevated plasma ANF (50.5 +/- 11.1 vs. 309.4 +/- 32.6 pg/ml, P < 0.001). Competitive binding studies of renal glomerular ANF receptors revealed no change in total receptor density, Bmax (369.6 +/- 27.4 vs. 282.8 +/- 26.2 fmol/mg protein), nor in dissociation constant, Kd (647.4 +/- 79.4 vs. 648.5 +/- 22.9 pM). Also, ANF-C receptor density (254.3 +/- 24.8 vs. 233.8 +/- 23.5 fmol/mg protein), nor affinity were affected by heart failure. Inner medullary receptors were exclusively of the GC-A subtype with Bmax (153.2 +/- 26.4 vs. 134.5 +/- 21.2 fmol/mg protein) and Kd (395.7 +/- 148.0 vs. 285.8 +/- 45.0 pM) not altered by cardiomyopathy. The increase in ANF-stimulated glomerular cGMP production was similar in normal and CMO hamsters (94- vs. 75-fold). These results demonstrate that renal ANF receptors do not contribute to the attenuated renal responses to ANF in hamster cardiomyopathy.

UI MeSH Term Description Entries
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009202 Cardiomyopathies A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS). Myocardial Disease,Myocardial Diseases,Myocardial Diseases, Primary,Myocardial Diseases, Secondary,Myocardiopathies,Primary Myocardial Disease,Cardiomyopathies, Primary,Cardiomyopathies, Secondary,Primary Myocardial Diseases,Secondary Myocardial Diseases,Cardiomyopathy,Cardiomyopathy, Primary,Cardiomyopathy, Secondary,Disease, Myocardial,Disease, Primary Myocardial,Disease, Secondary Myocardial,Diseases, Myocardial,Diseases, Primary Myocardial,Diseases, Secondary Myocardial,Myocardial Disease, Primary,Myocardial Disease, Secondary,Myocardiopathy,Primary Cardiomyopathies,Primary Cardiomyopathy,Secondary Cardiomyopathies,Secondary Cardiomyopathy,Secondary Myocardial Disease
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
March 1987, Endocrinology and metabolism clinics of North America,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
August 1993, Molecular and cellular biochemistry,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
January 1994, Life sciences,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
July 1989, Sheng li ke xue jin zhan [Progress in physiology],
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
July 1992, Kidney international,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
January 1992, Annual review of physiology,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
January 1988, Contributions to nephrology,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
September 1988, The American journal of physiology,
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
February 1988, Hypertension (Dallas, Tex. : 1979),
S Mukaddam-Daher, and M Jankowski, and T V Dam, and E W Quillen, and J Gutkowska
May 1993, Journal of hypertension,
Copied contents to your clipboard!