Structure activity studies of the substrate binding site in monoamine oxidase B. 1995

D E Edmondson
Department of Biochemistry, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.

The influence of para and meta substitution of benzylamine analogues on their interaction with bovine liver monoamine oxidase B has been investigated to provide insights into the nature of the substrate binding site. Binding data with para-substituted benzylamine analogues show the area of the binding site about the para position to be hydrophobic and exhibiting some steric constraints. Alkylation of the benzylamine nitrogen with methyl groups results in a dominance of steric constraints about the para-position as an influence on binding. meta-Substitution of the benzylamine ring results in a decreased binding affinity which exhibits a dependence on the van der Waals volume of the substituent indicating steric constraints also occur about this area of the bound substrate. The independence of the rate of enzyme reduction with the nature of the meta-substituent suggests these benzylamine analogues are bound in the substrate site in a manner which optimizes overlap of the pro-R benzyl C-H bond with the lone pair orbital on the nitrogen. In contrast, the observed rates of enzyme reduction by para-substituted benzylamine analogues exhibit a dominant steric dependence which suggests the mode of binding of this class of analogues does not provide this optimal overlap for efficient C-H bond cleavage. Support for this conclusion also comes from the observation that para-substituted N,N-dimethylbenzylamine analogues are competitive inhibitors and not substrates for monoamine oxidase B while the meta-substituted analogues are substrates, albeit poor ones. The demonstration of a tunneling contribution to the C-H bond cleavage step demonstrates the absence of any motion or changes in solvation coupled with that catalytic event and the close proximity of the enzyme group accepting the H to the pro-R position of the bound substrate. Little or no influence of meta or para benzylamine substituent on the rate of O2 reaction with the reduced flavin-protonated imine complex is observed which suggests alterations in the configuration of the bound substrate do not influence the reactivity of the reduced flavin.

UI MeSH Term Description Entries
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016015 Logistic Models Statistical models which describe the relationship between a qualitative dependent variable (that is, one which can take only certain discrete values, such as the presence or absence of a disease) and an independent variable. A common application is in epidemiology for estimating an individual's risk (probability of a disease) as a function of a given risk factor. Logistic Regression,Logit Models,Models, Logistic,Logistic Model,Logistic Regressions,Logit Model,Model, Logistic,Model, Logit,Models, Logit,Regression, Logistic,Regressions, Logistic

Related Publications

D E Edmondson
May 1976, Journal of medicinal chemistry,
D E Edmondson
January 1995, Archives of biochemistry and biophysics,
D E Edmondson
January 1981, Canadian journal of biochemistry,
D E Edmondson
June 1998, The Journal of biological chemistry,
D E Edmondson
October 2005, Bioorganic & medicinal chemistry,
Copied contents to your clipboard!