Separation of phenotypes in mutant alleles of the Schizosaccharomyces pombe cell-cycle checkpoint gene rad1+. 1995

G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
Department of Molecular Biology, University of Göteborg, Sweden.

The Schizosaccharomyces pombe rad1+ gene is involved in the G2 DNA damage cell-cycle checkpoint and in coupling mitosis to completed DNA replication. It is also required for viability when the cdc17 (DNA ligase) or wee1 proteins are inactivated. We have introduced mutations into the coding regions of rad1+ by site-directed mutagenesis. The effects of these mutations on the DNA damage and DNA replication checkpoints have been analyzed, as well as their associated phenotypes in a cdc17-K42 or a wee1-50 background. For all alleles, the resistance to radiation or hydroxyurea correlates well with the degree of functioning of checkpoint pathways activated by these treatments. One mutation, rad1-S3, completely abolishes the DNA replication checkpoint while partially retaining the DNA damage checkpoint. As single mutants, the rad1-S1, rad1-S2, rad1-S5, and rad1-S6 alleles have a wild-type phenotype with respect to radiation sensitivity and checkpoint functions; however, like the rad1 null allele, the rad1-S1 and rad1-S2 alleles exhibit synthetic lethality at the restrictive temperature with the cdc17-K42 or the wee1-50 mutation. The rad1-S5 and rad1-S6 alleles allow growth at higher temperatures in a cdc17-K42 or wee1-50 background than does wild-type rad1+, and thus behave like "superalleles." In most cases both chromosomal and multi-copy episomal mutant alleles have been investigated, and the agreement between these two states is very good. We provide evidence that the functions of rad1 can be dissociated into three groups by specific mutations. Models for the action of these rad1 alleles are discussed. In addition, a putative negative regulatory domain of rad1 is identified.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D004720 Endonucleases Enzymes that catalyze the hydrolysis of the internal bonds and thereby the formation of polynucleotides or oligonucleotides from ribo- or deoxyribonucleotide chains. EC 3.1.-. Endonuclease
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal

Related Publications

G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
December 1998, Genomics,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
December 1998, Genomics,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
April 1992, The EMBO journal,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
July 1998, The Journal of biological chemistry,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
July 1999, Genomics,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
November 2000, Nucleic acids research,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
December 1996, The EMBO journal,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
January 1999, Genomics,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
November 2017, Antonie van Leeuwenhoek,
G Kanter-Smoler, and K E Knudsen, and G Jimenez, and P Sunnerhagen, and S Subramani
March 1999, Oncogene,
Copied contents to your clipboard!