Metal selectivity of exocytosis in alpha-toxin-permeabilized bovine chromaffin cells. 1996

J L Tomsig, and J B Suszkiw
Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA.

Metal selectivity of exocytosis was analyzed by comparing the effects of polyvalent metal cations Ca2+, Ba2+, Sr2+, Pb2+, La3+, Cd2+, Co2+, Tb3+, Mn2+, and Zn2+ on the release of norepinephrine (NE) from staphylococcal alpha-toxin-permeabilized bovine chromaffin cells. Pb2+, La3+, Cd2+, Sr2+, and Ba2+ activated NE secretion accompanied by the release of intragranular dopamine beta-hydroxylase but not cytosolic lactate dehydrogenase, indicating the activation of the mechanism of exocytosis. The release triggered by saturating concentrations of Pb2+, La3+, Cd2+, and Sr2+ was nonadditive with Ca2+, indicating a common site of action. In contrast, the Ba2(+)-evoked NE release was additive with Ca2+ and the Ca2+ agonists Pb2+, La3+, Cd2+, and Sr2+, suggesting that Ba2+ activates secretion at a site distinct from the Ca2+ receptor. In distinction to the NE release evoked by Pb2+, La3+, Cd2+, and Ba2+, the Sr(2+)-evoked NE release was associated with a significant elevation of Ca2+ concentration in the medium and abolished by Ca2+ chelation. This indicates that the secretagogue effect of Sr2+ was indirect and secondary to the displacement of bound Ca2+, Co2+ and Mn2+ inhibited the NE release evoked by Ca2+, Sr2+, Pb2+, La3+, and Cd2+ but had no effect on the Ba(2+)-dependent secretion. Tb3+ and Zn2+ were without effect on exocytosis.

UI MeSH Term Description Entries
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010738 Type C Phospholipases A subclass of phospholipases that hydrolyze the phosphoester bond found in the third position of GLYCEROPHOSPHOLIPIDS. Although the singular term phospholipase C specifically refers to an enzyme that catalyzes the hydrolysis of PHOSPHATIDYLCHOLINE (EC 3.1.4.3), it is commonly used in the literature to refer to broad variety of enzymes that specifically catalyze the hydrolysis of PHOSPHATIDYLINOSITOLS. Lecithinase C,Phospholipase C,Phospholipases, Type C,Phospholipases C
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005089 Exocytosis Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

J L Tomsig, and J B Suszkiw
January 1990, Toxicon : official journal of the International Society on Toxinology,
J L Tomsig, and J B Suszkiw
July 1988, Journal of neurochemistry,
J L Tomsig, and J B Suszkiw
January 1995, The Journal of biological chemistry,
J L Tomsig, and J B Suszkiw
December 1987, The Journal of biological chemistry,
Copied contents to your clipboard!