Effect of stimulation on burst firing in cat primary auditory cortex. 1995

D M Bowman, and J J Eggermont, and G M Smith
Department of Psychology, University of Calgary, Alberta, Canada.

1. Neural activity was recorded extracellularly with two independent microelectrodes aligned in parallel and advanced perpendicular to isofrequency sheets in cat primary auditory cortex. Multiunit activity was separated into single-unit spike trains using a maximum variance spike sorting algorithm. Only units that demonstrated a high quality of sorting and a minimum spontaneous firing rate of 0.2 spikes/s were considered for analysis. The primary aim of this study was to describe the effect of periodic click train and broadband noise stimulation on short-time-scale (< or = 50 ms) bursts in the spike trains of single auditory cortical units and to determine whether stimulation influenced the occurrence, spike count, and/or temporal structure of burst firing relative to a spontaneous baseline. 2. Extracellular recordings were made in 20 juvenile and adult cats from 69 single auditory cortical units during click train stimulation and silence, and from 30 single units during noise stimulation and in silence. In an additional 15 single units the effect of both click train and noise stimulation was investigated. The incidence, spike count, and temporal structure of short-time-scale burst firing in the first 100 ms following stimulus presentation was compared with burst firing in the period starting 500 ms after stimulus presentation and with spontaneous burst firing. In addition, the serial dependence of interspike intervals within a burst was tested during periods of stimulation. 3. Burst firing was present in the stimulation, poststimulation, and spontaneous conditions. Longer bursts (consisting of > or = 3 spikes) were more commonly observed in the poststimulation and spontaneous conditions than in the stimulation condition. This effect was most pronounced during click stimulation. A period of elevated firing activity was present in a subset of units 0.5-1.5 s after stimulus presentation, indicating prolonged effects of stimulation on single-unit firing behavior. 4. For both stimuli, the proportion of single-unit responses composed of bursts was significantly greater in poststimulation and spontaneous periods than during stimulation. Burst rate was higher in post-click-train stimulation and spontaneous periods than during periods of click stimulation. The isolated spike rate was significantly higher during periods of noise and click stimulation than in the poststimulation and spontaneous periods. 5. An examination of the autocorrelograms and higher-order interspike interval histograms of single-unit responses during click train stimulation indicated that 25% of single-unit spike trains contained an excess of brief first-order intervals and 14% of spike trains contained a shortage of long higher-order interspike intervals relative to a spontaneous baseline. During noise stimulation, 10% of single-unit responses contained an excess of short intervals relative to baseline. Interspike intervals of short-duration bursts were not serially dependent during periods of stimulation. 6. A comparison of the autocorrelograms and higher-order interval histograms of single-unit responses in the poststimulation and spontaneous conditions indicated that 20% of single-unit spike trains contained an excess of short first-, second-, and third-order intervals following stimulation. This subgroups of single units could not be distinguished on the basis of the age of the animal or the depth at which the recording was made. 7. The low incidence of burst firing during stimulation opposes the view that bursts serve as a mechanism to emphasize or amplify particular stimulus-related responses in the presence of ongoing spontaneous activity in the primary auditory cortex. Moreover, there is little evidence to support the notion that brief bursts represent neural codes, because intraburst intervals are not serially dependent. It is suggested that pyramidal burst firing may be an effective way to evoke postsynaptic firing in inhibitory interneurons and subsequ

UI MeSH Term Description Entries
D009622 Noise Any sound which is unwanted or interferes with HEARING other sounds. Noise Pollution,Noises,Pollution, Noise
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005072 Evoked Potentials, Auditory The electric response evoked in the CEREBRAL CORTEX by ACOUSTIC STIMULATION or stimulation of the AUDITORY PATHWAYS. Auditory Evoked Potentials,Auditory Evoked Response,Auditory Evoked Potential,Auditory Evoked Responses,Evoked Potential, Auditory,Evoked Response, Auditory,Evoked Responses, Auditory,Potentials, Auditory Evoked
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
D016012 Poisson Distribution A distribution function used to describe the occurrence of rare events or to describe the sampling distribution of isolated counts in a continuum of time or space. Distribution, Poisson

Related Publications

D M Bowman, and J J Eggermont, and G M Smith
August 2004, Cerebral cortex (New York, N.Y. : 1991),
D M Bowman, and J J Eggermont, and G M Smith
February 1996, Neuroreport,
D M Bowman, and J J Eggermont, and G M Smith
January 1997, Nihon Jibiinkoka Gakkai kaiho,
D M Bowman, and J J Eggermont, and G M Smith
August 1998, Journal of neurophysiology,
D M Bowman, and J J Eggermont, and G M Smith
August 1992, Hearing research,
D M Bowman, and J J Eggermont, and G M Smith
January 1994, Journal of neurophysiology,
D M Bowman, and J J Eggermont, and G M Smith
September 1999, Brain research,
D M Bowman, and J J Eggermont, and G M Smith
June 2007, The Laryngoscope,
D M Bowman, and J J Eggermont, and G M Smith
January 1997, Acta oto-laryngologica. Supplementum,
Copied contents to your clipboard!