Pharmacokinetics and pharmacodynamics of ketoprofen enantiomers in calves. 1995

M F Landoni, and P Lees
Department of Veterinary Basic Sciences, Royal Veterinary College, Hawkshead Campus, Hatfield, Herts, United Kingdom.

The pharmacokinetics (PK) and pharmacodynamics (PD) of (S)- and (R)-ketoprofen (KTP) enantiomers were studied in calves after intravenous administration of each enantiomer at a dose of 1.5 mg/kg. Pharmacodynamic properties were evaluated using a model of acute inflammation, comprising subcutaneously implanted tissue cages stimulated by intracaveal injection of carrageenan. Chiral inversion of (R)-KTP to the (S)-antipode occurred. The R:S ratio in plasma was 33:1 5 min after administration, decreasing to 1:1 at 8 h. The calculated extent of inversion was 31 +/- 7%. The R:S ratio in inflammatory exudate was of the order 3:1 at all the sampling times and the ratio in transudate was approximately 2:1 for 6 h, declining to 1:1 at 30 h. Only (S)-KTP was detected in biological fluids after administration of this enantiomer. Elimination half-life was longer for the (S) (2.19 h) than the (R)-enantiomer (1.30 h) and volume of distribution was also somewhat higher for the (S)-enantiomer. Body clearance values were 0.119 l/kg/h for (S)-KTP and 0.151 l/kg/h for the (R)-antipode. For (R)-KTP effects obtained were considered as a hybrid, since they potentially reflect the actions of both enantiomers. Concentrations of LTB4 and the cytokines interleukin-1, interleukin-6, and tumor necrosis factor alpha, in exudate were not significantly affected by either (R)- or (S)-KTP treatments. Inhibition of ex vivo thromboxane B2 (TxB2) synthesis, exudate prostaglandin E2 (PGE2) synthesis, beta-glucuronidase release (beta-glu), and bradykinin-induced skin swelling was significant in both treated groups. PK/PD modelling was applied to the (S)-KTP treatment only. EC50 values for inhibition of serum TxB2, exudate PGE2 and beta-glu and BK-induced swelling were 0.047, 0.042, 0.101, and 0.038 microgram/ml, respectively. It is concluded that the low EC50 values for inhibition of TxB2 and PGE2 by (S)-KTP are likely to explain the effects produced by (R)-KTP administration, since concentrations of (S)-KTP in exudate of these calves following chiral inversion were at least 5 times higher than the EC50 at all sampling times. The data for beta-glu and bradykinin-induced swelling inhibition indicate possible inhibitory actions of (R)-KTP as well as (S)-KTP.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D007660 Ketoprofen An IBUPROFEN-type anti-inflammatory analgesic and antipyretic. It is used in the treatment of rheumatoid arthritis and osteoarthritis. Benzoylhydratropic Acid,19,583 RP,2-(3-Benzoylphenyl)propionic Acid,Alrheumat,Alrheumum,Orudis,Profenid,RP-19583,RP 19583,RP, 19,583,RP19583
D008297 Male Males
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005122 Exudates and Transudates Exudates are fluids, CELLS, or other cellular substances that are slowly discharged from BLOOD VESSELS usually from inflamed tissues. Transudates are fluids that pass through a membrane or squeeze through tissue or into the EXTRACELLULAR SPACE of TISSUES. Transudates are thin and watery and contain few cells or PROTEINS. Transudates,Exudates,Transudates and Exudates,Exudate,Transudate
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000894 Anti-Inflammatory Agents, Non-Steroidal Anti-inflammatory agents that are non-steroidal in nature. In addition to anti-inflammatory actions, they have analgesic, antipyretic, and platelet-inhibitory actions. They act by blocking the synthesis of prostaglandins by inhibiting cyclooxygenase, which converts arachidonic acid to cyclic endoperoxides, precursors of prostaglandins. Inhibition of prostaglandin synthesis accounts for their analgesic, antipyretic, and platelet-inhibitory actions; other mechanisms may contribute to their anti-inflammatory effects. Analgesics, Anti-Inflammatory,Aspirin-Like Agent,Aspirin-Like Agents,NSAID,Non-Steroidal Anti-Inflammatory Agent,Non-Steroidal Anti-Inflammatory Agents,Nonsteroidal Anti-Inflammatory Agent,Anti Inflammatory Agents, Nonsteroidal,Antiinflammatory Agents, Non Steroidal,Antiinflammatory Agents, Nonsteroidal,NSAIDs,Nonsteroidal Anti-Inflammatory Agents,Agent, Aspirin-Like,Agent, Non-Steroidal Anti-Inflammatory,Agent, Nonsteroidal Anti-Inflammatory,Anti-Inflammatory Agent, Non-Steroidal,Anti-Inflammatory Agent, Nonsteroidal,Anti-Inflammatory Analgesics,Aspirin Like Agent,Aspirin Like Agents,Non Steroidal Anti Inflammatory Agent,Non Steroidal Anti Inflammatory Agents,Nonsteroidal Anti Inflammatory Agent,Nonsteroidal Anti Inflammatory Agents,Nonsteroidal Antiinflammatory Agents

Related Publications

M F Landoni, and P Lees
January 2008, Biopharmaceutics & drug disposition,
M F Landoni, and P Lees
September 1990, Clinical pharmacokinetics,
M F Landoni, and P Lees
September 1996, Psychopharmacology,
M F Landoni, and P Lees
August 2002, Journal of veterinary pharmacology and therapeutics,
M F Landoni, and P Lees
June 1997, The Journal of pharmacology and experimental therapeutics,
M F Landoni, and P Lees
March 1996, The British veterinary journal,
M F Landoni, and P Lees
December 1997, British journal of clinical pharmacology,
M F Landoni, and P Lees
January 1989, European journal of clinical pharmacology,
M F Landoni, and P Lees
August 2011, Journal of veterinary pharmacology and therapeutics,
M F Landoni, and P Lees
April 1974, Clinical pharmacology and therapeutics,
Copied contents to your clipboard!