Structural organization and chromosomal localization of the human ribosomal protein L9 gene. 1996

K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.

The intron-containing gene for the human ribosomal protein L9 has been cloned, sequenced and localized. The gene is approximately 5.5 kb in length and contains 8 exons. Splice sites follow the AG/GT consensus rule. The message for human rpL9 is 712 nt in length and is detected in all tissues examined. In the adult, expression is highest in retina and liver while brain shows highest expression among the fetal tissues tested. The transcription start site contains an oligopyrimidine tract, TTCTTTCTT, similar to those found in other ribosomal protein genes. As in other previously characterized ribosomal protein genes, a TATA box is absent from the 5' flanking region but a number of elements recognized by common transcription factors are present including Sp1 sites, CACCC boxes, inverted CCAAT boxes, and GATA elements. Another possible element of interest in the rpL9 5' flanking region is RFX1 also found in the well characterized rat rpL30 promoter. The gene was mapped by fluorescent in situ hybridization to band 13p of chromosome 4. At least 8 possible pseudogenes are present in the human genome, one of which is on Xp. As assessed by Southern 'Zoo-blot' analysis and direct cDNA sequence comparison, the human ribosomal protein L9 gene, like other ribosomal protein genes, is highly conserved among mammals.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002894 Chromosomes, Human, Pair 4 A specific pair of GROUP B CHROMOSOMES of the human chromosome classification. Chromosome 4
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons

Related Publications

K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
August 2000, European journal of endocrinology,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
December 1997, Genomics,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
July 1998, Genomics,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
October 1999, Gene,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
September 1998, American journal of human genetics,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
January 1998, Gene,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
July 1989, European journal of biochemistry,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
January 1990, Genomics,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
September 1990, The Journal of biological chemistry,
K Mazuruk, and T J Schoen, and G J Chader, and T Iwata, and I R Rodriguez
December 1992, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!