Basicranial flexion, relative brain size, and facial kyphosis in Homo sapiens and some fossil hominids. 1995

C Ross, and M Henneberg
Department of Anatomy and Human Biology, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa.

Comparative work among nonhominid primates has demonstrated that the basicranium becomes more flexed with increasing brain size relative to basicranial length and as the upper and lower face become more ventrally deflected (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305-324). In order to determine whether modern humans and fossil hominids follow these trends, the cranial base angle (measure of basicranial flexion), angle of facial kyphosis, and angle of orbital axis orientation were measured from computed tomography (CT) scans of fossil hominids (Sts 5, MLD 37/38, OH9, Kabwe) and lateral radiographs of 99 extant humans. Brain size relative to basicranial length was calculated from measures of neurocranial volume and basicranial length taken from original skulls, radiographs, CT scans, and the literature. Results of bivariate correlation analyses revealed that among modern humans basicranial flexion and brain size/basicranial length are not significantly correlated, nor are the angles of orbital axis orientation and facial kyphosis. However, basicranial flexion and orbit orientation are significantly positively correlated among the humans sampled, as are basicranial flexion and the angle of facial kyphosis. Relative to the comparative sample from Ross and Ravosa (1993), all hominids have more flexed basicrania than other primates: Archaic Homo sapiens, Homo erectus, and Australopithecus africanus do not differ significantly from Modern Homo sapiens in their degree of basicranial flexion, although they differ widely in their relative brain size. Comparison of the hominid values with those predicted by the nonhominid reduced major-axis equations reveal that, for their brain size/basicranial length, Archaic and Modern Homo sapiens have less flexed basicrania than predicted. H. erectus and A. africanus have the degree of basicranial flexion predicted by the nonhominid reduced major-axis equation. Modern humans have more ventrally deflected orbits than all other primates and, for their degree of basicranial flexion, have more ventrally deflected orbits than predicted by the regression equations for hominoids. All hominoids have more ventrally deflected orbital axes relative to their palate orientation than other primates. It is argued that hominids do not strictly obey the trend for basicranial flexion to increase with increasing relative brain size because of constraints on the amount of flexion that do not allow it to decrease much below 90 degrees. Therefore, if basicranial flexion is a mechanism for accommodating an expanding brain among non-hominid primates, other mechanisms must be at work among hominids.

UI MeSH Term Description Entries
D008297 Male Males
D010163 Paleontology The study of early forms of life through fossil remains. Archaeoparasitology,Paleoparasitology,Taphonomy
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002508 Cephalometry The measurement of the dimensions of the HEAD. Craniometry
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012886 Skull The SKELETON of the HEAD including the FACIAL BONES and the bones enclosing the BRAIN. Calvaria,Cranium,Calvarium,Skulls
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015186 Hominidae Family of the suborder HAPLORHINI (Anthropoidea) comprising bipedal primate MAMMALS. It includes modern man (HOMO SAPIENS) and the great apes: gorillas (GORILLA GORILLA), chimpanzees (PAN PANISCUS and PAN TROGLODYTES), and orangutans (PONGO PYGMAEUS). Apes,Hominids,Hominins,Homo,Hominini,Pongidae,Ape,Hominid,Hominin,Homininus

Related Publications

C Ross, and M Henneberg
July 1993, American journal of physical anthropology,
C Ross, and M Henneberg
December 2004, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft,
C Ross, and M Henneberg
January 2014, Annals of human biology,
C Ross, and M Henneberg
November 1997, Medical hypotheses,
C Ross, and M Henneberg
January 2010, American journal of physical anthropology,
C Ross, and M Henneberg
May 2024, American journal of human genetics,
C Ross, and M Henneberg
September 1967, Minerva medica,
C Ross, and M Henneberg
November 1977, American journal of physical anthropology,
C Ross, and M Henneberg
June 2008, Journal of human evolution,
Copied contents to your clipboard!