cis-Diamminedichloroplatinum(II)-induced cell death through apoptosis in sensitive and resistant human ovarian carcinoma cell lines. 1996

M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
Cancer Research Campaign Centre For Cancer Therapeutics, Institute of Cancer Research, Royal Cancer Hospital, Sutton, UK.

We have studied the effects of the chemotherapeutic drug cis-diamminedichloroplatinum(II) (cis-platin) on three human ovarian carcinoma cell lines - one sensitive to the drug (CH1), one with acquired resistance (CH1cisR) and one with intrinsic resistance (SKOV-3). Previous work has shown that the 50% inhibitory concentrations (IC50 values) after a 2-h exposure to the drug are: CH1, 2.5 microM; CH1cisR, 7.5 microM; and SKOV-3, 33 microM. Despite the variation in sensitivity, the amount of Pt bound to DNA and the rate of removal of Pt was similar for the three lines. There were significant differences in the rates of formation of DNA cross-links but these were not large enough to account for the high resistance of the SKOV-3 line. We have reported that in the L1210 murine leukaemia cell line there are two mechanisms of cisplatin-induced cell death - one of which involves apoptosis. In this paper, we report on an investigation into whether sensitivity to apoptosis played a role in the resistance of these ovarian lines toward cisplatin. After a 2-h incubation with the drug, cells from the three lines showed evidence of death through apoptosis. The cells detached from the culture dish in a time- and dose-dependent fashion. These cells morphologically were quite distinctive from the attached cells and showed changes in their chromatin structure indicative of apoptosis. Their DNA had not been degraded into oligonucleosomal fragments (200 bp and multiples thereof) but had been cut into larger fragments (30 kilobase pairs, kbp) of a size associated with chromatin domains (chromatin loops). At equitoxic doses of drug, the quantity of cells undergoing apoptosis was similar for the three cell lines. The most prominent effect on cell-cycle kinetics was a slowdown in S-phase transit during which the cells underwent apoptosis. Cells that successfully completed the S phase subsequently suffered a temporary G2 block. We propose that the sensitivity of these cell lines to cisplatin was governed by their ability to handle damage caused by platination of the DNA and that the major mechanism of cisplatin-induced cell death in all three cell lines was the induction of apoptosis.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
January 1988, Cancer research,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
January 1994, Anticancer research,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
January 1990, Cancer chemotherapy and pharmacology,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
September 1998, International journal of cancer,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
June 1988, Cancer research,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
January 1992, Oncology,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
April 1992, Cancer research,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
April 1997, European journal of cancer (Oxford, England : 1990),
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
April 1991, Cancer research,
M G Ormerod, and C O'Neill, and D Robertson, and L R Kelland, and K R Harrap
January 1991, International journal of cancer,
Copied contents to your clipboard!