Dependence of fluorodeoxyuridine-induced cytotoxicity and megabase DNA fragment formation on S phase progression in HT29 cells. 1996

H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
Upjohn Center for Clinical Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109-0504, USA.

The relationship between cell cycle progression and induction of DNA double-strand breaks and cytotoxicity by exposure to fluorodeoxyuridine (FdUrd) was studied in HT29 human colon cancer cells. Fractionation of drug-treated populations by centrifugal elutriation yielded subpopulations having widely divergent abilities to progress through S phase in the presence of the drug. One of these subpopulations, which appeared to undergo coordinated growth arrest, was resistant to FdUrd cytotoxicity and DNA damage. In contrast, the subpopulation which was able to progress furthest through S phase in the presence of FdUrd underwent unbalanced growth arrest (i.e., increase in size and mass out of proportion to DNA synthesis), and displayed both DNA double-strand break formation (assayed by pulsed field gel electrophoresis) and loss of clonogenicity. When cells were elutriated prior to drug treatment, producing fractions enriched in cells at various cell cycle stages, no significant differences in sensitivity to FdUrd-induced cytotoxicity were detected among elutriation fractions. These findings support the model that, in HT29 cells, progression into and through S phase during drug treatment is an important determinant of FdUrd-induced DNA damage and cytotoxicity, but that the cell cycle position at the start of drug exposure is not a critical factor for these effects.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D005467 Floxuridine An antineoplastic antimetabolite that is metabolized to fluorouracil when administered by rapid injection; when administered by slow, continuous, intra-arterial infusion, it is converted to floxuridine monophosphate. It has been used to treat hepatic metastases of gastrointestinal adenocarcinomas and for palliation in malignant neoplasms of the liver and gastrointestinal tract. FUdR,Fluorodeoxyuridine,5-FUdR,5-Fluorodeoxyuridine,5 Fluorodeoxyuridine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000964 Antimetabolites, Antineoplastic Antimetabolites that are useful in cancer chemotherapy. Antineoplastic Antimetabolites

Related Publications

H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
May 1995, International journal of radiation biology,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
March 1991, Molecular pharmacology,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
September 1996, International journal of radiation biology,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
October 1997, Molecular pharmacology,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
September 1995, Radiation research,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
April 1994, Radiation research,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
January 1987, Acta physiologica et pharmacologica Bulgarica,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
May 2001, Journal of cellular physiology,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
April 2005, Oncogene,
H Y Tang, and K L Weber, and T S Lawrence, and A K Merchant, and J Maybaum
April 2002, International journal of oncology,
Copied contents to your clipboard!