OBJECTIVE To evaluate the effect of radiation dose reduction on image ++quality in computed musculoskeletal radiography and determine optimal exposure range. METHODS In 11 corpses, 1 hand and 1 hip were examined with film-screen radiography, and a series of computed radiographs was obtained using exactly the same technique except for the exposure, which was 100, 50, 25, 12.5, 6.25, and 1.56% of the mAs numbers used for the film-screen images. The computed hip radiographs were processed in 2 different ways, one simulating the film-screen images and one using contrast enhancement. Four radiologists reviewed the images regarding the following parameters: cortical bone, trabecular bone, joint space, and soft tissue, giving each a diagnostic quality rating on a scale from 1 to 5. The median and mean values were found for the pooled results. RESULTS For the hands, the computed radiographs were ranked inferior to the film-screen images for all parameters except soft tissue, where the computed radiographs scored higher. The computed images with 50 and 25% exposure were ranked equal to the 100% ones. The quality rating slowly declined with lower exposures. For the hips, the 100 and 50% computed radiographs were generally similar to or slightly better than the film-screen images. The decline was somewhat faster than for the hands. The contrast-enhanced hip images scored less than the nonenhanced images at any given exposure for all parameters except soft tissue, where the contrast-enhanced images scored better at all exposures. The difference between nonenhanced and enhanced images became less at the lower exposures. CONCLUSIONS Lowering the exposure in computed musculoskeletal radioagrphy below the level of film-screen radiography is feasible, especially in the peripheral skeleton. Contrast enhancement seems to be valuable only in the evaluation of soft-tissue structures.