Specific function of a G.U wobble pair from an adjacent helical site in tRNA(Ala) during recognition by alanyl-tRNA synthetase. 1996

W H McClain, and K Gabriel, and J Schneider
Department of Bacteriology, University of Wisconsin, Madison 53706-1567, USA.

G.U wobble pairs are crucial to many examples of RNA-protein recognition. We previously concluded that the G.U wobble pair in the acceptor helix of Escherichia coli alanine tRNA (tRNA(Ala)) is recognized indirectly by alanyl-tRNA synthetase (AlaRS), although direct recognition may play some role. Our conclusion was based on the finding that amber suppressor tRNA Ala with G.U shifted to an adjacent helical site retained substantial but incomplete Ala acceptor function in vivo. Other researchers concluded that only direct recognition is operative. We report here a repeat of our original experiment using tRNA(Lys) instead of tRNA(Ala). We find, as in the original experiment, that a shifted G.U confers Ala acceptor activity. Moreover, the modified tRNA(Lys) was specific for Ala, corroborating our original conclusion and making it more compelling.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000412 Alanine-tRNA Ligase An enzyme that activates alanine with its specific transfer RNA. EC 6.1.1.7. Alanyl T RNA Synthetase,Ala-tRNA Ligase,Alanyl-tRNA Synthetase,Ala tRNA Ligase,Alanine tRNA Ligase,Alanyl tRNA Synthetase,Ligase, Ala-tRNA,Ligase, Alanine-tRNA,Synthetase, Alanyl-tRNA
D001482 Base Composition The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid. Base Ratio,G+C Composition,Guanine + Cytosine Composition,G+C Content,GC Composition,GC Content,Guanine + Cytosine Content,Base Compositions,Base Ratios,Composition, Base,Composition, G+C,Composition, GC,Compositions, Base,Compositions, G+C,Compositions, GC,Content, G+C,Content, GC,Contents, G+C,Contents, GC,G+C Compositions,G+C Contents,GC Compositions,GC Contents,Ratio, Base,Ratios, Base
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012344 RNA, Transfer, Ala A transfer RNA which is specific for carrying alanine to sites on the ribosomes in preparation for protein synthesis. Alanine-Specific tRNA,Transfer RNA, Ala,tRNAAla,tRNA(Ala),Ala Transfer RNA,Alanine Specific tRNA,RNA, Ala Transfer,tRNA, Alanine-Specific

Related Publications

W H McClain, and K Gabriel, and J Schneider
October 1969, Journal of cellular physiology,
W H McClain, and K Gabriel, and J Schneider
April 2019, Nucleic acids research,
W H McClain, and K Gabriel, and J Schneider
November 2011, Biochemistry,
W H McClain, and K Gabriel, and J Schneider
March 2024, Bio Systems,
W H McClain, and K Gabriel, and J Schneider
August 1987, Biochemistry,
W H McClain, and K Gabriel, and J Schneider
September 2019, ACS omega,
Copied contents to your clipboard!