Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells. 1996

W M Kulyk, and L M Hoffman
Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Canada.

Studies of neural, hepatic, and other cells have demonstrated that in vitro ethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformities in vivo, prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23-25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant of in vitro chondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in 35SO4 incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol on in vitro chondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D011509 Proteoglycans Glycoproteins which have a very high polysaccharide content. Proteoglycan,Proteoglycan Type H
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D006025 Glycosaminoglycans Heteropolysaccharides which contain an N-acetylated hexosamine in a characteristic repeating disaccharide unit. The repeating structure of each disaccharide involves alternate 1,4- and 1,3-linkages consisting of either N-acetylglucosamine (see ACETYLGLUCOSAMINE) or N-acetylgalactosamine (see ACETYLGALACTOSAMINE). Glycosaminoglycan,Mucopolysaccharides

Related Publications

W M Kulyk, and L M Hoffman
January 1992, Journal of craniofacial genetics and developmental biology,
W M Kulyk, and L M Hoffman
March 1969, The Journal of experimental zoology,
W M Kulyk, and L M Hoffman
January 2018, Differentiation; research in biological diversity,
W M Kulyk, and L M Hoffman
January 2000, Methods in molecular biology (Clifton, N.J.),
W M Kulyk, and L M Hoffman
January 1983, Acta biologica Hungarica,
W M Kulyk, and L M Hoffman
October 2009, The Journal of biological chemistry,
W M Kulyk, and L M Hoffman
July 2007, Current protocols in stem cell biology,
W M Kulyk, and L M Hoffman
January 1982, Progress in clinical and biological research,
Copied contents to your clipboard!