Intracellular transactivation of the insulin-like growth factor I receptor by an epidermal growth factor receptor. 1996

J L Burgaud, and R Baserga
Jefferson Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

Growth factor receptors may be transactivated not only by homologous receptors, but also by heterologous receptors. We have investigated this possibility, using for this purpose R-/EGFR cells, which are mouse embryo cells devoid of IGF-I receptors, but overexpressing the EGF receptor. At variance with mouse embryo cells with a wild-type number of IGF-I receptors and overexpressing the EGF receptor, R-/EGFR cells cannot grow in EGF only, nor can they form colonies in soft agar. However, if a wild type human IGF-I receptor is stably transfected into R-/EGFR cells, growth in EGF and colony formation in soft agar are restored. To determine a possible interaction between the two receptors, we transfected into R-/EGFR cells a number of IGF-I receptor mutants with different impaired functions. The only IGF-I receptor that cannot reverse the growth phenotype of R-/EGFR cells is a receptor with a point mutation at the ATP-binding site. All other mutant receptors, even when incapable of responding to IGF-I with a mitogenic signal, made R-/EGFR cells fully capable of responding with growth to EGF stimulation. IGF-I receptor mutants that are mitogenic but not transforming made R-/EGFR cells grow in EGF only, but were incapable of inducing the transformed phenotype. The mutant IGF-I receptors are activated (tyrosyl phosphorylation of IRS-I) in response to EGF. These experiments indicate that certain IGF-I receptor mutants with loss of function can be reactivated intracellularly by an overexpressed EGF receptor and confirm that the C-terminus of the IGF-IR is required for its transforming activity.

UI MeSH Term Description Entries
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

J L Burgaud, and R Baserga
May 2000, IUBMB life,
J L Burgaud, and R Baserga
May 2009, Archives of physiology and biochemistry,
Copied contents to your clipboard!