Tyrosinase and related proteins in mammalian pigmentation. 1996

V del Marmol, and F Beermann
LOCE, Institut J. Bordet, Université Libre de Bruxelles, Belgium.

Tyrosinase is the key enzyme in pigment synthesis, initiating a cascade of reactions which convert the amino acid tyrosine to the melanin biopolymer. Two other tyrosinase-related proteins (TRP) are known, TRP-1 (probably DHICAoxidase) and TRP-2 (DOPAchrome tautomerase). These proteins show about 40% homology, and recent results have indicated that the genes might be derived from a common ancestor. We will discuss recent findings on genomic organization, and on the proteins and their presumed function, which is important for eumelanin synthesis in mouse and man.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D008543 Melanins Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration. Allomelanins,Melanin,Phaeomelanins
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D010860 Pigments, Biological Any normal or abnormal coloring matter in PLANTS; ANIMALS or micro-organisms. Biological Pigments
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V del Marmol, and F Beermann
July 2000, Pathologie-biologie,
V del Marmol, and F Beermann
January 1987, The International journal of biochemistry,
V del Marmol, and F Beermann
January 2018, Chemistry (Weinheim an der Bergstrasse, Germany),
V del Marmol, and F Beermann
August 1994, Pigment cell research,
V del Marmol, and F Beermann
January 2024, Journal of pharmaceutical analysis,
V del Marmol, and F Beermann
August 2004, Experimental cell research,
V del Marmol, and F Beermann
August 1951, The Journal of biological chemistry,
V del Marmol, and F Beermann
March 1949, The Journal of biological chemistry,
Copied contents to your clipboard!