The Bacillus subtilis response regulator Spo0A stimulates transcription of the spoIIG operon through modification of RNA polymerase promoter complexes. 1996

T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla, CA 92037, USA.

Sporulation in Bacillus subtilis is dependent on the response regulator Spo0A, which both represses and activates transcription in vitro. The activity of Spo0A is increased by phosphorylation. We previously demonstrated that the phosphorylation increased the ability of Spo0A to stimulate in vivo transcription from the promoter for the spoIIG operon, one of the operons known to be regulated by Spo0A in vivo. In the work reported here we have examined the kinetics of transcription initiation at the spoIIG operon promoter using a single round transcription assay and the kinetics of formation of spoIIG promoter-RNA polymerase complexes using DNase I footprinting. Both the kinetic assays and the footprint assays indicated that the initial binding of the polymerase to the template was not dependent on the presence of Spo0A. The phosphorylated form of Spo0A stimulated the rate of initiation by affecting a step that occurred after the initial interaction of the polymerase with the template. Phosphorylation of Spo0A may stimulate transcription by modifying preinitiation complexes containing the polymerase and the promoter.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006493 Heparin A highly acidic mucopolysaccharide formed of equal parts of sulfated D-glucosamine and D-glucuronic acid with sulfaminic bridges. The molecular weight ranges from six to twenty thousand. Heparin occurs in and is obtained from liver, lung, mast cells, etc., of vertebrates. Its function is unknown, but it is used to prevent blood clotting in vivo and vitro, in the form of many different salts. Heparinic Acid,alpha-Heparin,Heparin Sodium,Liquaemin,Sodium Heparin,Unfractionated Heparin,Heparin, Sodium,Heparin, Unfractionated,alpha Heparin

Related Publications

T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
March 1992, Journal of bacteriology,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
October 1998, The Journal of biological chemistry,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
August 1998, Nucleic acids research,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
September 1997, Journal of bacteriology,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
January 2004, Journal of bacteriology,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
July 1998, Journal of bacteriology,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
April 2004, The Journal of biological chemistry,
T H Bird, and J K Grimsley, and J A Hoch, and G B Spiegelman
April 1988, Journal of bacteriology,
Copied contents to your clipboard!