Interaction of tRNA (uracil-5-)-methyltransferase with NO2Ura-tRNA. 1996

X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
Department of Biochemistry, University of California, San Francisco 94143-0448 USA.

tRNA in which uracil is completely replaced by 5-nitro-uracil was prepared by substituting 5-nitro-UTP for UTP in an in vitro transcription reaction. The rationale was that the 5-nitro substituent activates the 6-carbon of the Ura heterocycle towards nucleophiles, and hence could provide mechanism-based inhibitors of enzymes which utilize this feature in their catalytic mechanism. When assayed shortly after mixing, the tRNA analog, NO2Ura-tRNA, is a potent competitive inhibitor of tRNA-Ura methyl transferase (RUMT). Upon incubation, the analog causes a time-dependent inactivation of RUMT which could be reversed by dilution into a large excess of tRNA substrate. Covalent RUMT-NO2Ura-tRNA complexes could be isolated on nitrocellulose filters or by SDS-PAGE. The interaction of RUMT and NO2Ura-tRNA was deduced to involve formation of a reversible complex, followed by formation of a reversible covalent complex in which Cys 324 of RUMT is linked to the 6-position of NO2Ura 54 in NO2Ura-tRNA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D003101 Collodion A nitrocellulose solution in ether and alcohol. Collodion has a wide range of uses in industry including applications in the manufacture of photographic film, in fibers, in lacquers, and in engraving and lithography. In medicine it is used as a drug solvent and a wound sealant. Nitrocellulose,Celloidin,Cellulose Nitrate,Collodion Cotton,Pyroxylin,Cotton, Collodion,Nitrate, Cellulose
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012359 tRNA Methyltransferases Enzymes that catalyze the S-adenosyl-L-methionine-dependent methylation of ribonucleotide bases within a transfer RNA molecule. EC 2.1.1. RNA Methylase,RNA Methylases,RNA, Transfer, Methyltransferases,T RNA Methyltransferases,tRNA Methyltransferase,Methylase, RNA,Methylases, RNA,Methyltransferase, tRNA,Methyltransferases, T RNA,Methyltransferases, tRNA,RNA Methyltransferases, T
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014498 Uracil One of four nucleotide bases in the nucleic acid RNA.

Related Publications

X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
January 1979, Enzyme,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
December 1987, Biochemistry,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
February 2024, Acta crystallographica. Section F, Structural biology communications,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
May 2020, Molecular informatics,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
September 2008, Nucleic acids research,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
October 1987, Bioorganicheskaia khimiia,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
March 1978, Biochemistry,
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
March 2002, RNA (New York, N.Y.),
X Gu, and A Matsuda, and K M Ivanetich, and D V Santi
March 2008, Journal of molecular biology,
Copied contents to your clipboard!