Regulation of expression of group IA capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. 1995

C Whitfield, and W J Keenleyside
Department of Microbiology, University of Guelph, Ontario, Canada.

Bacterial surface polysaccharides fulfill a number of important roles in cell-cell interactions, survival in natural environments, and formation of biofilms. Consequently, the mechanisms involved in regulation of extracellular polysaccharides are predicted to have a significant impact on microbial adaptation. Strains of Escherichia coli, Klebsiella spp, and Erwinia spp produce extracellular polysaccharides which share structural features. There are also similarities in the organization of genes required for synthesis of these cell surface polymers and, in some cases, the mechanism of synthesis may be related. Despite the diverse habitats of these bacteria, the systems which regulate expression of their extracellular polysaccharides appear to share components and mechanisms. Understanding these regulatory processes may lead to novel therapeutic approaches for pathogens, or for control of unwanted biofilm formation in industrial settings.

UI MeSH Term Description Entries
D007709 Klebsiella A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms arrange singly, in pairs, or short chains. This genus is commonly found in the intestinal tract and is an opportunistic pathogen that can give rise to bacteremia, pneumonia, urinary tract and several other types of human infection.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011134 Polysaccharides Long chain polymeric CARBOHYDRATES composed of MONOSACCHARIDES linked by glycosidic bonds. Glycan,Glycans,Polysaccharide
D011135 Polysaccharides, Bacterial Polysaccharides found in bacteria and in capsules thereof. Bacterial Polysaccharides
D002240 Carbohydrate Sequence The sequence of carbohydrates within POLYSACCHARIDES; GLYCOPROTEINS; and GLYCOLIPIDS. Carbohydrate Sequences,Sequence, Carbohydrate,Sequences, Carbohydrate
D004885 Erwinia A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria whose organisms are associated with plants as pathogens, saprophytes, or as constituents of the epiphytic flora.
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000942 Antigens, Bacterial Substances elaborated by bacteria that have antigenic activity. Bacterial Antigen,Bacterial Antigens,Antigen, Bacterial
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial

Related Publications

C Whitfield, and W J Keenleyside
January 2008, Advances in applied microbiology,
C Whitfield, and W J Keenleyside
October 1996, Current opinion in biotechnology,
C Whitfield, and W J Keenleyside
January 2006, Annual review of biochemistry,
C Whitfield, and W J Keenleyside
October 1958, Canadian journal of microbiology,
C Whitfield, and W J Keenleyside
August 1997, FEMS microbiology letters,
Copied contents to your clipboard!