Purification and characterization of N-acetylmuramyl-L-alanine amidase from human plasma using monoclonal antibodies. 1996

M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
Department of Immunology, Erasmus University Rotterdam, The Netherlands.

N-Acetylmuramyl-L-alanine amidase (EC 3.5.1.28) cleaves the amide bond between N-acetyl muramic acid and L-alanine in the peptide side chain of different peptidoglycan products. The enzyme was purified from human plasma using a three-step column chromatography procedure. Monoclonal antibodies were produced against the purified human enzyme. By coupling of a high affinity monoclonal antibody to sepharose beads an immunoadsorbent column was prepared. Using this second purification method it was possible to purify large amounts of the amidase from human plasma in a single step. SDS-PAGE showed one single band of 70 kDa and two-dimensional electrophoresis showed the presence of multiple isomeric forms of the protein with pI between 6.5 and 7.9. Two different methods were used for determination of substrate specificity, a HPLC method separating peptidoglycan monomers from the reaction products after incubation with amidase and a colorimetric method when high molecular weight peptidoglycan was used as a substrate for amidase. It is shown that the disaccharide tetra peptide, disaccharide penta peptide and the anhydro disaccharide tetrapeptide are good substrates for the amidase and that muramyl dipeptide and disaccharide dipeptide are not a substrate for the amidase. Using one of the monoclonal antibodies against the amidase it was shown in FACScan analysis that N-acetylmuramyl-L-alanine amidase is present in granulocytes but not in monocytes from unstimulated peripheral blood of a healthy donor. The presence of N-acetylmuramyl-L-alanine amidase in granulocytes is a novel finding and perhaps important for the inactivation of biologically active peptidoglycan products still present after hydrolysis by lysozyme.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009238 N-Acetylmuramoyl-L-alanine Amidase An autolytic enzyme bound to the surface of bacterial cell walls. It catalyzes the hydrolysis of the link between N-acetylmuramoyl residues and L-amino acid residues in certain cell wall glycopeptides, particularly peptidoglycan. EC 3.5.1.28. Mucopeptide Amidohydrolase,Autolysin,LE-Enzyme,Murein Hydrolase,Peptidoglycan Hydrolase,T7 Endolysin,T7 Lysozyme,Amidase, N-Acetylmuramoyl-L-alanine,Amidohydrolase, Mucopeptide,Endolysin, T7,Hydrolase, Murein,Hydrolase, Peptidoglycan,LE Enzyme,Lysozyme, T7,N Acetylmuramoyl L alanine Amidase
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003124 Colorimetry Any technique by which an unknown color is evaluated in terms of standard colors. The technique may be visual, photoelectric, or indirect by means of spectrophotometry. It is used in chemistry and physics. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
February 1982, Biochimica et biophysica acta,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
November 1972, Journal of bacteriology,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
June 1977, European journal of biochemistry,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
June 1995, Protein expression and purification,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
July 1976, The Journal of biological chemistry,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
July 1990, Biochimica et biophysica acta,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
November 2020, Cells,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
January 1996, Bioscience, biotechnology, and biochemistry,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
January 1975, Acta biochimica Polonica,
M A Hoijer, and M J Melief, and W Keck, and M P Hazenberg
June 1972, Journal of bacteriology,
Copied contents to your clipboard!