The modulation of calcium channel currents recorded from adult rat dorsal raphe neurones by 5-HT1A receptor or direct G-protein activation. 1995

R H McAllister-Williams, and J S Kelly
Department of Pharmacology, University of Edinburgh Medical School, Scotland, U.K.

The effect 5-HT1A receptor activation on the temperature dependence of HVA calcium channel currents has been studied in acutely isolated DR neurones, using barium as the charge carrier. 8-OH-DPAT caused a reduction in the temperature dependence of the peak current amplitude. However the most dramatic effect of 8-OH-DPAT was a large reduction in Q10 for the current activation rate. This also occurred with direct G-protein activation using GTP gamma S. In the presence of GTP gamma S, current activation became bi-exponential, rather than mono-exponential as in the control situation. The time constants of both components were significantly slower than the controls, and the Q10 for both components was significantly lower. GDP beta S had no effect on the temperature dependence or kinetics of activation of HVA current. Depolarizing prepulses applied prior to test pulses were able to reverse the action of 8-OH-DPAT on the Q10 of the activation rate. When prepulses were applied to cells containing GTP gamma S, the activation rate Q10 was similar to control values. We postulate that the highly significant reduction in activation rate Q10, seen with both 8-OH-DPAT and GTP gamma S, is as a result of a change in the mechanism underlying activation of HVA channels on depolarization. Contrary to previous models of calcium current modulation our results show that the mechanisms responsible for slowed activation by transmitters and facilitation of the residual current by depolarizing prepulses have little in common. We present a new model of transmitter modulation of HVA current, consistent with a mechanistic approach to channel subunit structure.

UI MeSH Term Description Entries
D008297 Male Males
D011903 Raphe Nuclei Collections of small neurons centrally scattered among many fibers from the level of the TROCHLEAR NUCLEUS in the midbrain to the hypoglossal area in the MEDULLA OBLONGATA. Caudal Linear Nucleus of the Raphe,Interfascicular Nucleus,Nucleus Incertus,Rostral Linear Nucleus of Raphe,Rostral Linear Nucleus of the Raphe,Superior Central Nucleus,Central Nucleus, Superior,Incertus, Nucleus,Nuclei, Raphe,Nucleus, Interfascicular,Nucleus, Raphe,Nucleus, Superior Central,Raphe Nucleus
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017366 Serotonin Receptor Agonists Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS. 5-HT Agonists,5-Hydroxytryptamine Agonists,Serotonin Agonists,5-HT Agonist,5-Hydroxytrytamine Agonist,Receptor Agonists, Serotonin,Serotonergic Agonist,Serotonergic Agonists,Serotonin Agonist,Serotonin Receptor Agonist,5 HT Agonist,5 HT Agonists,5 Hydroxytryptamine Agonists,5 Hydroxytrytamine Agonist,Agonist, 5-HT,Agonist, 5-Hydroxytrytamine,Agonist, Serotonergic,Agonist, Serotonin,Agonist, Serotonin Receptor,Agonists, 5-HT,Agonists, 5-Hydroxytryptamine,Agonists, Serotonergic,Agonists, Serotonin,Agonists, Serotonin Receptor,Receptor Agonist, Serotonin
D017371 8-Hydroxy-2-(di-n-propylamino)tetralin A serotonin 1A-receptor agonist that is used experimentally to test the effects of serotonin. 8-OH-DPAT,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (+-)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (R)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (S)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrochloride, (R)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrochloride, (S)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (+-)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (R)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (S)-Isomer

Related Publications

R H McAllister-Williams, and J S Kelly
January 1990, Biochemical Society symposium,
R H McAllister-Williams, and J S Kelly
August 2010, The international journal of neuropsychopharmacology,
R H McAllister-Williams, and J S Kelly
January 1990, Society of General Physiologists series,
R H McAllister-Williams, and J S Kelly
January 1991, British journal of pharmacology,
R H McAllister-Williams, and J S Kelly
April 2011, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Copied contents to your clipboard!