A cloning strategy for G-protein-coupled hormone receptors: the ovine beta 1-adrenergic receptor. 1995

J F Padbury, and Y T Tseng, and J A Waschek
Department of Pediatrics, Harbor-UCLA Medical Center, Torrance 90502, USA.

Regulation of beta 1-adrenergic receptors is unusual in developing animals. For example, glucocorticoid-and thyroid hormone-responsiveness for several genes is seen in animals treated during fetal life but beta 1-responsiveness is not seen until after birth. In order to investigate this at the transcriptional level, the ovine beta 1 receptor gene was cloned from a sheep genomic library. An approach using high-stringency screening with cDNA probes and oligonucleotides from regions of human and rat genes conserved but unique to the beta 1 receptor but not to other seven transmembrane, G-protein-coupled receptors. Over 800,000 clones were screened from which 40-50 positive clones were identified by each of the probes. There was, however, only a single clone which was recognized by each of the probes. A 5-kb insert was subcloned and shown to contain sequences which hybridized to each of the probes. Using the restriction map of the rat beta 1 receptor, a 1.0-kb Pst1 internal fragment was further subcloned for sequence identification. Confirmation of this fragment as the ovine beta 1 receptor was based on homology of the beta 1 receptor from other species and tissue distribution of mRNA. Nucleotide sequence homology was 93% with the human beta 1 receptor and 84% with rat. Amino acid sequence homology was > 75% and approached 100% in the transmembrane regions. The approach described represents a practical approach to cloning and identification of hormone receptors from the highly homologous members of the seven-transmembrane, G-protein-coupled receptors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D011943 Receptors, Adrenergic, beta One of two major pharmacologically defined classes of adrenergic receptors. The beta adrenergic receptors play an important role in regulating CARDIAC MUSCLE contraction, SMOOTH MUSCLE relaxation, and GLYCOGENOLYSIS. Adrenergic beta-Receptor,Adrenergic beta-Receptors,Receptors, beta-Adrenergic,beta Adrenergic Receptor,beta-Adrenergic Receptor,beta-Adrenergic Receptors,Receptor, Adrenergic, beta,Adrenergic Receptor, beta,Adrenergic beta Receptor,Adrenergic beta Receptors,Receptor, beta Adrenergic,Receptor, beta-Adrenergic,Receptors, beta Adrenergic,beta Adrenergic Receptors,beta-Receptor, Adrenergic,beta-Receptors, Adrenergic
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

J F Padbury, and Y T Tseng, and J A Waschek
January 1991, Vitamins and hormones,
J F Padbury, and Y T Tseng, and J A Waschek
January 1992, Annual review of neuroscience,
J F Padbury, and Y T Tseng, and J A Waschek
January 2006, Journal of computer-aided molecular design,
J F Padbury, and Y T Tseng, and J A Waschek
January 2002, The Journal of biological chemistry,
J F Padbury, and Y T Tseng, and J A Waschek
August 2022, Acta biochimica et biophysica Sinica,
J F Padbury, and Y T Tseng, and J A Waschek
September 2020, Acta pharmaceutica Sinica. B,
J F Padbury, and Y T Tseng, and J A Waschek
February 2002, Progress in neurobiology,
Copied contents to your clipboard!