Isolation of full-size mRNA from ethanol-fixed cells after cellular immunofluorescence staining and fluorescence-activated cell sorting (FACS). 1995

C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
Medical Institute of Environmental Hygiene, University of Düsseldorf, Germany.

Preparation of intact, full-size RNA from tissues or cells requires stringent precautions against ubiquitous and rather stable RNases. Fluorescence-activated cell sorting (FACS) usually aims at the isolation of cells according to cell surface markers on living cells, from which RNA can be obtained by standard protocols. The separation of cells according to intracellular immunofluorescence markers, such as intranuclear, intracytoplasmic, or secreted molecules, requires permeation of the cell membrane for the staining antibodies, which is usually achieved by fixation. However, commonly used fixatives such as ethanol, methanol, or formaldehyde do not inactivate RNases completely, thereby hampering the analysis of complete RNA molecules from fixed cells. We report isolation of intact, full-size RNA suitable for Northern blotting from cells that were fixed by 95% ethanol/5% acetic acid containing RNase inhibitors, stained intracellularly, and sorted by FACS.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005404 Fixatives Agents employed in the preparation of histologic or pathologic specimens for the purpose of maintaining the existing form and structure of all of the constituent elements. Great numbers of different agents are used; some are also decalcifying and hardening agents. They must quickly kill and coagulate living tissue. Fixative,Pickling Agents,Agents, Pickling
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000085 Acetates Derivatives of ACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxymethane structure. Acetate,Acetic Acid Esters,Acetic Acids,Acids, Acetic,Esters, Acetic Acid
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
August 2017, BMC cell biology,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
August 2012, Cold Spring Harbor protocols,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
January 2017, Methods in molecular biology (Clifton, N.J.),
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
May 2018, Journal of immunological methods,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
January 2016, Methods in molecular biology (Clifton, N.J.),
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
December 2009, Cold Spring Harbor protocols,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
July 1984, The British journal of dermatology,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
January 2013, Journal of visualized experiments : JoVE,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
March 2024, Soft matter,
C Esser, and C Göttlinger, and J Kremer, and C Hundeiker, and A Radbruch
January 2018, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!