Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. 1996

K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA.

Members of the resolvase/invertase family of site-specific recombinases require supercoiled substrates containing two recombination sites. To dissect the roles of supercoiling in recombination by the Tn3 and gamma delta resolvases and the phage Mu Gin invertase, we used substrates that provided some but not all of the topological features of the standard substrate. We divided the Tn3 resolvase reaction into two stages, synapsis and postsynapsis. Using structural and functional topological analyses, we verified that the resolvase synaptic complexes with nicked catenanes were recombination intermediates. The requirement for supercoiling was even less stringent for the gamma delta resolvase, which recombined nicked catenanes about half as well as it did supercoiled substrates. Gin recombination of catenanes occurred even if the recombinational enhancer was on a nicked ring, as long as both crossover sites were on a supercoiled ring. Therefore, supercoiling is required at the Gin crossover sites but not at the enhancer. We conclude that solely conformational effects of supercoiling are required for resolvase synapsis and the function of the Gin enhancer, but that a torsional effect, probably double helix unwinding, is needed for Tn3 resolvase postsynapsis and at the Gin recombination sites.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004742 Enhancer Elements, Genetic Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter. Enhancer Elements,Enhancer Sequences,Element, Enhancer,Element, Genetic Enhancer,Elements, Enhancer,Elements, Genetic Enhancer,Enhancer Element,Enhancer Element, Genetic,Enhancer Sequence,Genetic Enhancer Element,Genetic Enhancer Elements,Sequence, Enhancer,Sequences, Enhancer
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
September 1989, Trends in genetics : TIG,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
April 2010, Biochemical Society transactions,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
July 1996, Journal of molecular biology,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
November 1991, Molecular & general genetics : MGG,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
February 1989, Protein sequences & data analysis,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
December 1990, Genes & development,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
December 1990, Journal of molecular biology,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
January 1979, Cold Spring Harbor symposia on quantitative biology,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
March 1989, Journal of molecular biology,
K R Benjamin, and A P Abola, and R Kanaar, and N R Cozzarelli
May 1983, Virology,
Copied contents to your clipboard!