Polymerizability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. 1977

P Johnson, and L B Smillie

Polymerizability of tropomyosin was unaffected by the removal of the three terminal residues 282, 283, and 284 using carboxypeptidase A. However, when residue 281 was removed, polymerizability was abolished. These results are consistent with a 9-residue molecular head-to-tail overlap in polymerized tropomyosin, in which residue 281 plays a space-filling role at the center of the overlap core. In acetylation studies, loss of polymerizability closely paralleled the extent of acetylation of lysine-7, and this residue was more susceptible to acetylation than any other. The effect of acetylation on polymerizability was probably caused not only by cleavage of salt-bridge between lysine 7 epsilon-NH2 and residue 284 alpha-COOH but also by distortion of the overlap core by the N-acetyl group. Specific modification of methionine in tropomyosin indicated that, in addition to residue 281, methionine-8 is also involved in formation of the overlap core. Modified nonpolymerizable tropomyosins could still bind to F-actin, indicating that the head-to-tail polymerization of tropomyosin is not a prerequisite for actin binding, although the regularity of tropomyosin molecules along the actin helix is presumably disrupted.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002268 Carboxypeptidases Enzymes that act at a free C-terminus of a polypeptide to liberate a single amino acid residue. Carboxypeptidase

Related Publications

P Johnson, and L B Smillie
March 1972, Canadian journal of biochemistry,
P Johnson, and L B Smillie
January 1973, Canadian journal of biochemistry,
P Johnson, and L B Smillie
July 1988, Biopolymers,
P Johnson, and L B Smillie
October 1970, Analytical biochemistry,
P Johnson, and L B Smillie
March 1972, Canadian journal of biochemistry,
P Johnson, and L B Smillie
May 1977, The Journal of biological chemistry,
P Johnson, and L B Smillie
July 1972, The Biochemical journal,
P Johnson, and L B Smillie
December 1978, Journal of biochemistry,
Copied contents to your clipboard!