Transport properties of the multidrug resistance-associated protein (MRP) in human tumour cells. 1996

Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
National Institute of Haematology and Immunology, Budapest, Hungary.

In this paper we demonstrate that the expression of the multidrug resistance-associated protein (MRP) in a variety of intact human tumour cells results in the ATP-dependent, mutually exclusive extrusion of both the acetoxymethyl ester and the free anion forms of the fluorescent dye calcein, as well as that of a fluorescent pyrenemaleimide-glutathione conjugate. The MRP-dependent transport of all these three model compounds closely correlates with the expression level of MRP and is cross-inhibited by hydrophobic anticancer drugs, by reversing agents for MDR1, and also by compounds not influencing MDR1, such as hydrophobic anions, alkylating agents, and inhibitors of organic anion transporters. Cellular glutathione depletion affects neither the MRP-dependent extrusion of calcein AM or free calcein, nor its modulation by most hydrophobic or anionic compounds, although eliminating the cross-inhibitory effect of glutathione conjugates. These results suggest that the outward pumping of both hydrophobic uncharged and water-soluble anionic compounds, including glutathione conjugates, is an inherent property of MRP, and offer sensitive methods for the functional diagnostics of this transport protein as well as for the rapid screening of drug-resistance modulating agents.

UI MeSH Term Description Entries
D008301 Maleimides Derivatives of maleimide (the structural formula H2C2(CO)2NH) containing a pyrroledione ring where the hydrogen atom of the NH group is replaced with aliphatic or aromatic groups.
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D015151 Immunoblotting Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies. Dot Immunoblotting,Electroimmunoblotting,Immunoelectroblotting,Reverse Immunoblotting,Immunoblotting, Dot,Immunoblotting, Reverse,Dot Immunoblottings,Electroimmunoblottings,Immunoblottings,Immunoblottings, Dot,Immunoblottings, Reverse,Immunoelectroblottings,Reverse Immunoblottings

Related Publications

Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
November 1995, Biochemical pharmacology,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
September 2000, Journal of neuro-oncology,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
January 1997, Anti-cancer drugs,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
June 1996, European journal of cancer (Oxford, England : 1990),
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
April 2006, Drug metabolism and disposition: the biological fate of chemicals,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
March 1997, International journal of cancer,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
November 1995, Clinical cancer research : an official journal of the American Association for Cancer Research,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
May 1997, Nihon rinsho. Japanese journal of clinical medicine,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
February 1996, Leukemia & lymphoma,
Z Holló, and L Homolya, and T Hegedüs, and B Sarkadi
January 1996, Anticancer research,
Copied contents to your clipboard!