Phorbol ester activation of the rat vascular myocyte Na(+)-H(+) exchanger isoform 1. 1996

M Siczkowski, and L L Ng
Department of Medicine and Therapeutics, Leicester (UK) Royal Infirmary.

Vascular myocytes from the spontaneously hypertensive rat (SHR) demonstrate elevated Na(+)-H(+) exchanger activity associated with increased cell proliferation and hyperresponsiveness to agonists such as phorbol esters. Since the Na(+)-H(+) exchanger isoform 1 (NHE-1) is stimulated by protein kinase C, we have investigated the effects of phorbol esters on NHE-1 activity and its phosphorylation in vascular myocytes of these rats. SHR cells demonstrated a larger alkalinization response to 12-O-tetradecanoylphorbol 13-acetate than Wistar-Kyoto rat (WKY) cells. Kinetic analyses indicated that whereas 12-O-tetradecanoylphorbol 13-acetate increased the maximal transport capacity of NHE-1 in both cell types, affinity for H+ was increased in WKY cells and cooperativity for H+ at the internal modifier site was reduced in SHR cells. In neither cell type was the subcellular distribution of NHE-1 altered by phorbol ester stimulation. NHE-1 phosphorylation was markedly reduced in WKY cells stimulated by the phorbol ester, an effect abolished by inhibition of protein kinase C. In contrast, NHE-1 phosphorylation in quiescent SHR cells was approximately double that of WKY cells and was reduced after phorbol ester treatment. Inhibition of protein kinase C in SHR cells led to a marked elevation of NHE-1 phosphorylation that was not associated with a change in the exchanger activity, but WKY cells exhibited a small, insignificant rise in NHE-1 phosphorylation. Thus, the kinetic responses of NHE-1 to phorbol esters in vascular myocytes of these rat strains are different, the changes in exchanger kinetics of SHR resembling those described in human hypertension. NHE-1 phosphorylation has an inverse relationship with protein kinase C activity. However, modulation of NHE-1 phosphorylation may not be associated with concurrent alterations in activity, indicating a role for non-phosphorylation-dependent mechanisms.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010703 Phorbol Esters Tumor-promoting compounds obtained from CROTON OIL (Croton tiglium). Some of these are used in cell biological experiments as activators of protein kinase C. Phorbol Diester,Phorbol Ester,Phorbol Diesters,Diester, Phorbol,Diesters, Phorbol,Ester, Phorbol,Esters, Phorbol
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M Siczkowski, and L L Ng
January 2005, The international journal of biochemistry & cell biology,
M Siczkowski, and L L Ng
August 2010, The Journal of biological chemistry,
M Siczkowski, and L L Ng
September 1998, The American journal of physiology,
M Siczkowski, and L L Ng
January 2008, Channels (Austin, Tex.),
M Siczkowski, and L L Ng
April 1987, Biochemical and biophysical research communications,
Copied contents to your clipboard!