Distinct rate and patterns of human CD4+ T-cell depletion in hu-PBL-SCID mice infected with different isolates of the human immunodeficiency virus. 1995

D E Mosier
Department of Immunology, Scripps Research Institute, La Jolla, California 93037, USA.

The most fundamental question about infection with the human immunodeficiency virus is the mechanism by which infection leads to depletion of CD4+ T lymphocytes, a critical cell type for the regulation of both cellular and humoral immunity. We have studied this issue using a unique small-animal model that is highly susceptible to infection with human immunodeficiency virus. Severe combined immune deficient mice are transplanted with human peripheral blood leukocytes to create hu-PBL-SCID mice, which maintain human T and B lymphocytes and some elements of functional immunity. The hu-PBL-SCID mice respond to human immune deficiency virus infection by the relatively rapid loss of human CD4+ T cells, while other human cells remain unaffected. In this paper, we review evidence showing that different isolates of human immunodeficiency virus-2 cause different rates of CD4+ T-cell depletion and that these rates reflect differences in local spread of infection with lymphoid organs.

UI MeSH Term Description Entries
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015496 CD4-Positive T-Lymphocytes A critical subpopulation of T-lymphocytes involved in the induction of most immunological functions. The HIV virus has selective tropism for the T4 cell which expresses the CD4 phenotypic marker, a receptor for HIV. In fact, the key element in the profound immunosuppression seen in HIV infection is the depletion of this subset of T-lymphocytes. T4 Cells,T4 Lymphocytes,CD4-Positive Lymphocytes,CD4 Positive T Lymphocytes,CD4-Positive Lymphocyte,CD4-Positive T-Lymphocyte,Lymphocyte, CD4-Positive,Lymphocytes, CD4-Positive,T-Lymphocyte, CD4-Positive,T-Lymphocytes, CD4-Positive,T4 Cell,T4 Lymphocyte
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015498 HIV-2 An HIV species related to HIV-1 but carrying different antigenic components and with differing nucleic acid composition. It shares serologic reactivity and sequence homology with the simian Lentivirus SIMIAN IMMUNODEFICIENCY VIRUS and infects only T4-lymphocytes expressing the CD4 phenotypic marker. HTLV-IV,Human T-Lymphotropic Virus Type IV,Human immunodeficiency virus 2,LAV-2,HIV-II,Human Immunodeficiency Virus Type 2,Human T Lymphotropic Virus Type IV,Immunodeficiency Virus Type 2, Human,SBL-6669
D016513 Mice, SCID Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice. SCID Mice,SCID-hu Mice,Severe Combined Immunodeficient Mice,Immunodeficient Mice, Severe Combined,Mouse, SCID,Mouse, SCID-hu,Mice, SCID-hu,Mouse, SCID hu,SCID Mouse,SCID hu Mice,SCID-hu Mouse
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018183 Transplantation Chimera An organism that, as a result of transplantation of donor tissue or cells, consists of two or more cell lines descended from at least two zygotes. This state may result in the induction of donor-specific TRANSPLANTATION TOLERANCE. Chimera, Transplantation,Chimeras, Transplantation,Transplantation Chimeras
D018791 CD4 Lymphocyte Count The number of CD4-POSITIVE T-LYMPHOCYTES per unit volume of BLOOD. Determination requires the use of a fluorescence-activated flow cytometer. Lymphocyte Count, CD4,T4 Lymphocyte Count,CD4 Cell Counts,CD4 Counts,CD4+ Cell Counts,CD4+ Counts,CD4 Cell Count,CD4 Count,CD4 Lymphocyte Counts,CD4+ Cell Count,CD4+ Count,Count, T4 Lymphocyte,Counts, T4 Lymphocyte,Lymphocyte Count, T4,Lymphocyte Counts, CD4,Lymphocyte Counts, T4,T4 Lymphocyte Counts

Related Publications

D E Mosier
November 1994, The Journal of experimental medicine,
D E Mosier
November 1995, Immunology today,
Copied contents to your clipboard!