ATP-induced cytoplasmic calcium mobilization in Bergmann glial cells. 1995

S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
Bogomoletz Institute of Physiology, Kiev-24, Ukraine.

ATP receptor mediated Ca2+ signaling was recorded from Bergmann glial cells in cerebellar slices obtained from mice of different ages (postnatal days 6 to 45). To measure the cytoplasmic concentration of Ca2+ ([Ca2+]in), either individual cells were loaded with the Ca(2+)-sensitive probes using the whole cell patch clamp technique or slices were incubated with the dye and the microfluorimetric system was focused on individual cells. Signals were recorded either with single-detector microfluorimetry of the dye fura-2 or by confocal laser scanning microfluorimetry (fluo-3-based recordings). Extracellular application of 100 microns ATP caused a transient elevation of [Ca2+]in, which amplitude was significantly higher in Bergmann glial cell processes as compared with their soma. The rank order of potency for the purinoreceptor agonists was: ADP > or = ATP > UTP >> AMP = adenosine = alpha, beta-methylene-ATP. ATP-triggered Ca2+ transients were reversibly inhibited by the P2 purinoreceptor agonist suramin (100 microM). The involvement of P2 metabotropic receptors is inferred by the observation that ATP mediated cytoplasmic Ca2+ transients were not associated with a measurable change in membrane conductance. The [Ca2+]in increase was due to release from inositol-1,4,5-trisphosphate (InsP3)-sensitive intracellular stores since responses were still observed in Ca(2+)-free extracellular solutions and were irreversibly blocked by the inhibitor of the sarco(endo)plasmic reticulum Ca2+ ATPase, thapsigargin, and by the competitive inhibitor of the InsP3-gated intracellular Ca2+ channels heparin. Intracellular dialysis altered the refilling process of the InsP3-sensitive stores, suggesting that cytoplasmic factors control ATP mediated Ca2+ signalling.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate

Related Publications

S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
June 1997, Cell calcium,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
April 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
June 1989, Biochimica et biophysica acta,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
January 1995, International review of neurobiology,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
March 1999, The Chinese journal of physiology,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
May 2007, Pflugers Archiv : European journal of physiology,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
June 1993, Neuroreport,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
September 1997, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
August 1996, Biochemistry and molecular biology international,
S Kirischuk, and T Möller, and N Voitenko, and H Kettenmann, and A Verkhratsky
June 1992, Science (New York, N.Y.),
Copied contents to your clipboard!