G protein-coupled receptors mediate a fast excitatory postsynaptic current in CA3 pyramidal neurons in hippocampal slices. 1995

L D Pozzo Miller, and J J Petrozzino, and J A Connor
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey 07110-1199, USA.

Synaptic activation in the presence of competitive (D,L-APV,CNQX) and noncompetitive (MK-801,GYKI-52466) ionotropic glutamate receptor antagonists induced fast (10-90% rise time of 15-30 msec) postsynaptic responses in CA3 pyramidal neurons from acute and cultured hippocampal slices. Postsynaptic currents were studied extensively in slice cultures, and displayed a linear current-voltage relationship, with a reversal potential between 0 mV and +10 mV, suggesting the activation of a nonselective cationic conductance. Inhibition of the GTPase cycle by intracellular perfusion with the nonhydrolyzable analog of GDP, GDP beta S, blocked the fast postsynaptic responses evoked in ionotropic antagonists, as well as baclofen-mediated outward K+ currents, known to be mediated by G protein-coupled GABAB receptors. Intracellular perfusion with GDP beta S did not affect the AMPA/kainate component of the synaptic currents. Irreversible activation of G proteins by intracellular perfusion with the nonhydrolyzable analog of GTP, GMP-PNP, occluded the baclofen responses, and evoked an inward current, consistent with the synaptically mediated conductance. Incubation of the slice cultures in pertussis toxin for 72 hr blocked baclofen-induced outward K+ currents, while the fast postsynaptic currents remained. The metabotropic glutamate receptor (mGluR) agonists 1S,3R-ACPD and 1S,3S-ACPD induced an inward current in the presence of the ionotropic antagonists, and occluded the fast EPSCs. The fast EPSCs were partially blocked by the mGluR antagonists L-AP3 and (+)MCPG, but there was differential antagonists sensitivity in two pathways stimulated (CA3 stratum radiatum vs CA3 stratum oriens). These data suggest that fast postsynaptic responses evoked in the presence of ionotropic glutamate receptor antagonists are mediated by G protein-coupled mGluRs linked to nonselective cationic channels.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D018094 Receptors, Metabotropic Glutamate Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action. Glutamate Receptors, Metabotropic,Metabotropic Glutamate Receptors,Receptors, Glutamate, Metabotropic,Metabotropic Glutamate Receptor,Glutamate Receptor, Metabotropic,Receptor, Metabotropic Glutamate
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

L D Pozzo Miller, and J J Petrozzino, and J A Connor
July 1997, Nature,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
September 1998, Proceedings of the National Academy of Sciences of the United States of America,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
July 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
March 1997, Journal of neurophysiology,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
January 1997, The European journal of neuroscience,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
October 1996, Brain research,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
March 2004, Neuropharmacology,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
July 1992, Journal of neurophysiology,
L D Pozzo Miller, and J J Petrozzino, and J A Connor
September 1991, Journal of neurophysiology,
Copied contents to your clipboard!