Behavioral and biochemical characterization of benzodiazepine receptor partial agonists in pigeons. 1996

J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
Drug Development Group, Addiction Research Center, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.

The ability of benzodiazepine receptor partial agonists to exhibit full efficacy in preclinical anxiolytic tests, in conjunction with initial clinical results, has suggested the possibility of a reduced clinical side-effect profile compared to benzodiazepine receptor full agonists like diazepam. Because punished behavior of pigeons has been useful in detecting effects of novel anxiolytic drugs, effects of imidazobenzodiazepine and beta-carboline benzodiazepine receptor partial agonists and some related compounds were evaluated in this species. The abilities of these compounds to substitute for the discriminative stimulus effects of the full agonists midazolam also was determined. Intrinsic efficacy was assessed by the degree to which gamma-aminobutyric acid increased ligand potency to displace [(3)H]Ro15-1788 (flumazinil) from membranes of pigeon cerebrum, and ranged from full agonist-like efficacy (Ro 19-5470; 7-(3-cyclopropyl-1,2,4-oxodiazol-5-yl)-5,6-dihydro-5-methyl-4H- imidazo[1,5a]-thieno[3,2-f]diazin-4-one) to minimal gamma-aminobutyric acid potentiations close to that of the antagonist flumazenil (abecarnil and Ro 41-7812; 7-chloro-4,5-dihydro-3-(3-hydroxy-1-propynyl)-5-methyl-6H-imidazo[1,5-a] -[1,4 ]benzodiazepine-6-one). Punished responding was increased markedly by midazolam and by all partial agonists, except Ro 41-7812 and Ro 42-8773 (7-chloro-3-[3-(cyclopropylmethoxy)-1-propynyl]-4,5-dihyro-5 -methyl-6H-imidaz o[1,5-a][1,4]benzodiazepine-6-one), at doses that did not affect nonpunished responding. In contrast to the full substitution generally observed in mammals, all of the partial agonists produced incomplete substitution (40-70%) in the midazolam drug discrimination procedure in pigeons. A positive relationship was observed between the degree of substitution and intrinsic efficacy. The benzodiazepine antagonists, flumazenil and ZK 93,426 (ethyl-5-isopropoxy-4-methoxymethyl-beta-carboline-3-carboxylate), neither increased punished responding nor substituted for midazolam. The results of the present study suggest that benzodiazepine receptor partial agonists and related compounds may provide full anxiolytic activity at doses that do not fully reproduce the subjective effect profile of full agonists.

UI MeSH Term Description Entries
D008297 Male Males
D008874 Midazolam A short-acting hypnotic-sedative drug with anxiolytic and amnestic properties. It is used in dentistry, cardiac surgery, endoscopic procedures, as preanesthetic medication, and as an adjunct to local anesthesia. The short duration and cardiorespiratory stability makes it useful in poor-risk, elderly, and cardiac patients. It is water-soluble at pH less than 4 and lipid-soluble at physiological pH. Dormicum,Midazolam Hydrochloride,Midazolam Maleate,Ro 21-3981,Versed,Hydrochloride, Midazolam,Maleate, Midazolam,Ro 21 3981,Ro 213981
D010856 Columbidae Family in the order COLUMBIFORMES, comprised of pigeons or doves. They are BIRDS with short legs, stout bodies, small heads, and slender bills. Some sources call the smaller species doves and the larger pigeons, but the names are interchangeable. Columba livia,Doves,Pigeons,Domestic Pigeons,Feral Pigeons,Rock Doves,Rock Pigeons,Domestic Pigeon,Dove,Dove, Rock,Doves, Rock,Feral Pigeon,Pigeon,Pigeon, Domestic,Pigeon, Feral,Pigeon, Rock,Pigeons, Domestic,Pigeons, Feral,Pigeons, Rock,Rock Dove,Rock Pigeon
D011678 Punishment The application of an unpleasant stimulus or penalty for the purpose of eliminating or correcting undesirable behavior. Punishments
D004193 Discrimination Learning Learning that is manifested in the ability to respond differentially to various stimuli. Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative
D005442 Flumazenil A potent benzodiazepine receptor antagonist. Since it reverses the sedative and other actions of benzodiazepines, it has been suggested as an antidote to benzodiazepine overdoses. Flumazepil,Anexate,Lanexat,Ro 15-1788,Romazicon,Ro 15 1788,Ro 151788
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014151 Anti-Anxiety Agents Agents that alleviate ANXIETY, tension, and ANXIETY DISORDERS, promote sedation, and have a calming effect without affecting clarity of consciousness or neurologic conditions. ADRENERGIC BETA-ANTAGONISTS are commonly used in the symptomatic treatment of anxiety but are not included here. Anti-Anxiety Agent,Anti-Anxiety Drug,Anxiolytic,Anxiolytic Agent,Anxiolytic Agents,Tranquilizing Agents, Minor,Anti-Anxiety Drugs,Anti-Anxiety Effect,Anti-Anxiety Effects,Antianxiety Effect,Antianxiety Effects,Anxiolytic Effect,Anxiolytic Effects,Anxiolytics,Tranquillizing Agents, Minor,Agent, Anti-Anxiety,Agent, Anxiolytic,Agents, Anti-Anxiety,Agents, Anxiolytic,Agents, Minor Tranquilizing,Agents, Minor Tranquillizing,Anti Anxiety Agent,Anti Anxiety Agents,Anti Anxiety Drug,Anti Anxiety Drugs,Anti Anxiety Effect,Anti Anxiety Effects,Drug, Anti-Anxiety,Drugs, Anti-Anxiety,Effect, Anti-Anxiety,Effect, Antianxiety,Effect, Anxiolytic,Effects, Anti-Anxiety,Effects, Antianxiety,Effects, Anxiolytic,Minor Tranquilizing Agents,Minor Tranquillizing Agents
D058785 GABA-A Receptor Agonists Endogenous compounds and drugs that bind to and activate GABA-A RECEPTORS. GABA-A Agonists,GABA-A Receptor Agonist,Agonist, GABA-A Receptor,Agonists, GABA-A,Agonists, GABA-A Receptor,GABA A Agonists,GABA A Receptor Agonist,GABA A Receptor Agonists,Receptor Agonist, GABA-A,Receptor Agonists, GABA-A

Related Publications

J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
October 1989, Journal of medicinal chemistry,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
January 1996, Pharmacology, biochemistry, and behavior,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
January 1993, Journal of psychopharmacology (Oxford, England),
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
June 1999, Psychopharmacology,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
July 1979, Nature,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
August 1990, European journal of pharmacology,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
December 1984, The Journal of pharmacology and experimental therapeutics,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
October 1979, European journal of pharmacology,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
September 1995, Psychopharmacology,
J M Witkin, and J B Acri, and G Wong, and S Gleeson, and J E Barrett
October 1985, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!