In vivo and in vitro studies of TrpR-DNA interactions. 1996

J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
Chemistry Department Princeton University, NJ 08544-1009, USA.

The binding of tryptophan repressor (TrpR) to its operators was examined quantitatively using in vitro and in vivo methods. DNA sequence requirements for 1:1 and tandem 2:1 (TrpR:DNA) binding in various sequence contexts were studied. The results indicate that the optimal half-site sequence for recognition by one helix-turn-helix motif of one TrpR dimer is 3'CNTGA5'5'GNACT3', consistent with contacts observed by X-ray diffraction analysis of cocrystalline 1:1 and 2:1 complexes. Half-sites can be paired to form a palindrome either by direct abutment, forming the nucleation site for a tandem 2:1 complex, or with an 8-base-pair spacer, forming a 1:1 target. Dimethylsulfate (DMS) methylation-protection footprinting in vitro of 1:1 and 2:1 complexes formed sequentially on the two unequal half-site pairs of the trpEDCBA operator from Serratia marcescens indicated an obligate hierarchy of site occupancy, with one half-site pair serving as the nucleation site for tandem binding. DMS footprinting of Escherichia coli operators in vivo showed that, over a wide range of intracellular TrpR concentration, the trpEDCBA operator is occupied by three repressor dimers, aroH is occupied by two dimers, and the 1:1 binding mode is used on the trpR operator. The coexistence of these distinct occupancy states implies that changes in protein concentration affect only the fractional occupancy of each operator rather than the binding mode, which is determined by the number of half-site sequences present in the operator region. Cooperativity of tandem complex formation measured by gel retardation using a symmetrized synthetic operator containing identical, optimal sites spaced as in natural operators was found to be modest, implying a maximum coupling free energy of approximately -2 kcal/mol. On other sequences the apparent degree of cooperativity, as well as the apparent affinity, varies with sequence and sequence context in a manner consistent with the structural models and which suggests compensation between affinity and cooperativity as a mechanism that allows tolerance of operator sequence variation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
August 1988, Journal of molecular biology,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
November 2002, Bioelectrochemistry (Amsterdam, Netherlands),
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
January 1979, Cold Spring Harbor symposia on quantitative biology,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
March 2006, Molecular microbiology,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
January 1996, Methods in enzymology,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
April 1991, Farmaco (Societa chimica italiana : 1989),
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
December 1994, British journal of cancer,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
January 1991, Agents and actions. Supplements,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
August 1983, Biochemistry international,
J Yang, and A Gunasekera, and T A Lavoie, and L Jin, and D E Lewis, and J Carey
June 2011, Biochemistry,
Copied contents to your clipboard!