Co-expression of the alpha subunit of human prolyl 4-hydroxylase with BiP polypeptide in insect cells leads to the formation of soluble and insoluble complexes. Soluble alpha-subunit-BiP complexes have no prolyl 4-hydroxylase activity. 1996

J Veijola, and T Pihlajaniemi, and K I Kivirikko
Collagen Research Unit, University of Oulu, Finland.

Prolyl 4-hydroxylase (EC 1.14.11.2) catalyses the post-translational formation of 4-hydroxyproline in collagens. The vertebrate enzymes are alpha2beta2 tetramers, their beta subunit being identical to protein disulphide isomerase (PDI). The function of the PDI-beta subunit in prolyl 4-hydroxylases is not fully understood, but it seems to be that of keeping the highly insoluble alpha subunits in solution. We report here that expression of the alpha subunit of human type I prolyl 4-hydroxylase in insect cells together with BiP polypeptide leads to the formation of both soluble and insoluble alpha-subunit-BiP complexes. Formation of the soluble complexes was evident from (1) a marked increase in the amount of the alpha subunit in the soluble fraction of the cell homogenates when expressed together with BiP, (2) immunoprecipitation experiments and (3) demonstration of the presence of some of the complexes by polyacrylamide gel electrophoresis under non-denaturing conditions. Formation of the insoluble complexes was suggested by an increase in the amount of BiP in the insoluble fraction when expressed together with the alpha subunit. Nevertheless the soluble alpha-subunit-BiP complexes had no prolyl 4-hydroxylase activity. This indicates that the function of the PDI-beta subunit in the prolyl 4-hydroxylase tetramer is not only that of keeping the alpha subunits in solution but appears to be more specific, probably that of keeping them in a catalytically active, non-aggregated conformation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011393 Procollagen-Proline Dioxygenase A mixed-function oxygenase that catalyzes the hydroxylation of a prolyl-glycyl containing peptide, usually in PROTOCOLLAGEN, to a hydroxyprolylglycyl-containing-peptide. The enzyme utilizes molecular OXYGEN with a concomitant oxidative decarboxylation of 2-oxoglutarate to SUCCINATE. The enzyme occurs as a tetramer of two alpha and two beta subunits. The beta subunit of procollagen-proline dioxygenase is identical to the enzyme PROTEIN DISULFIDE-ISOMERASES. Protocollagen Prolyl Hydroxylase,Procollagen Prolyl 4-Hydroxylase,4-Hydroxylase, Procollagen Prolyl,Dioxygenase, Procollagen-Proline,Hydroxylase, Protocollagen Prolyl,Procollagen Proline Dioxygenase,Procollagen Prolyl 4 Hydroxylase,Prolyl 4-Hydroxylase, Procollagen,Prolyl Hydroxylase, Protocollagen
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress

Related Publications

J Veijola, and T Pihlajaniemi, and K I Kivirikko
January 2022, Clinics (Sao Paulo, Brazil),
J Veijola, and T Pihlajaniemi, and K I Kivirikko
September 1994, Acta histochemica,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
November 1994, Gene,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
May 1995, Proceedings of the National Academy of Sciences of the United States of America,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
July 1999, Biochemical and biophysical research communications,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
July 2000, Genetics,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
December 1989, American journal of human genetics,
J Veijola, and T Pihlajaniemi, and K I Kivirikko
September 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!