Effect of recombinant human hemoglobin on human bone marrow progenitor cells: protection and reversal of 3'-azido-3'-deoxythymidine-induced toxicity. 1996

D A Fowler, and G J Rosenthal, and J P Sommadossi
Department of Pharmacology and Toxicology, University of Alabama at Birmingham 35294, USA.

Long-term therapy of AIDS patients with 3'-azido-3'-deoxythymidine (AZT) is limited by hematopoietic toxicity. While the mechanism(s) of this toxicity remain elusive, various strategies are being developed to reduce these toxic effects including combination therapy with non-myelotoxic anti-human immunodeficiency virus (HIV) drugs and/or administration of protective or rescue agents, such as cytokines and growth factors. Using a physiologically relevant human CD34+ bone marrow cell liquid culture system, a crosslinked human recombinant hemoglobin (rHb), currently in Phase II clinical trials, was investigated for effects on hematopoiesis and for its potential in protecting or reversing AZT-induced hematopoietic toxicity. These investigations demonstrated that 0.01, 0.1, or 1 microM human rHb did not affect the proliferation of erythroid or myeloid lineage cells. A concentration of 1 microM rHb partially protected erythroid lineage cells from an inhibition of proliferation induced by 0.1 and 1 microM AZT. Inhibition of proliferation of cells previously exposed to AZT was not reversed at this concentration. These data suggest that human rHb may be of benefit in reducing the toxic effects of AZT in the bone marrow of AIDS patients.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000998 Antiviral Agents Agents used in the prophylaxis or therapy of VIRUS DISEASES. Some of the ways they may act include preventing viral replication by inhibiting viral DNA polymerase; binding to specific cell-surface receptors and inhibiting viral penetration or uncoating; inhibiting viral protein synthesis; or blocking late stages of virus assembly. Antiviral,Antiviral Agent,Antiviral Drug,Antivirals,Antiviral Drugs,Agent, Antiviral,Agents, Antiviral,Drug, Antiviral,Drugs, Antiviral
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U

Related Publications

D A Fowler, and G J Rosenthal, and J P Sommadossi
July 1988, British journal of haematology,
D A Fowler, and G J Rosenthal, and J P Sommadossi
July 1989, Molecular pharmacology,
D A Fowler, and G J Rosenthal, and J P Sommadossi
March 1987, Antimicrobial agents and chemotherapy,
D A Fowler, and G J Rosenthal, and J P Sommadossi
December 1999, Antiviral research,
Copied contents to your clipboard!