Comparative effects of 1,25-dihydroxyvitamin D3 and EB 1089 on mouse renal and intestinal 25-hydroxyvitamin D3-24-hydroxylase. 1995

S Roy, and J Martel, and H S Tenenhouse
McGill University-Montreal Children's Hospital Research Institute, Department of Pediatrics, McGill University, Quebec, Canada.

EB 1089 is a vitamin D analog that is less potent than 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in its calcemic action but more potent in its antiproliferative action. We characterized the interaction of 1,25(OH)2D3 and EB 1089 with renal 25-hydroxyvitamin D3-24-hydroxylase (24-hydroxylase), the first enzyme in the C-24 oxidation pathway, and compared the effects of 1,25(OH)2D3 and EB 1089 on induction of 24-hydroxylase mRNA in mouse kidney and intestine. 1,25(OH)2D3 and EB 1089 were competitive inhibitors of 24-hydroxylase activity. However, the Ki for 1,25(OH)2D3 (5.2 +/- 2.5 nM) was significantly lower than that for EB 1089 (286 +/- 59 nM). In the kidney, the time course and extent of 24-hydroxylase mRNA induction, relative to 18S rRNA, was similar for 1,25(OH)2D3 and EB 1089 with a peak response at approximately equal to 6 h that was sustained for at least 16 h. In the intestine, however, induction of 24-hydroxylase mRNA, relative to 18S rRNA, was approximately 50% lower for EB 1089 than for 1,25(OH)2D3 at 3 h (p < 0.05) and 6 h (p < 0.05) while at 16 h 24-hydroxylase mRNA was no longer detectable. Moreover, while both 1,25(OH)2D3 and EB 10898 elicited a similar dose-dependent induction of 24-hydroxylase mRNA in the kidney (EC50 = 0.4 +/- 0.13 and 0.3 +/- 0.08 ng/g for EB 1089 and 1,25(OH)2D3, respectively), the EC50 for EB 1089 (6.6 +/- 1.7 ng/g) was significantly higher than that for 1,25(OH)2D3 (0.9 +/- 0.32 ng/g) in the intestine (p < 0.01). EB 1089 was also less effective than 1,25(OH)2D3 in the induction of intestinal but not renal calbindin-D9k mRNA. To determine the mechanism for tissue-specific differences in potency, we determined the binding affinity of 1,25(OH)2D3 and EB 1089 for the vitamin D receptor. In the kidney, Kd values for 1,25(OH)2D3 (0.40 +/- 0.95 nM) and EB 1089 (0.48 +/- 0.04 nM) were not different. However, in the intestine, the Kd for EB 1089 (1.43 +/- 0.19 nM) was significantly higher than that for 1,25(OH)2D3 (0.85 +/- 0.06 nM; p < 0.05). Our results demonstrate that: (i) EB 1089 has a 50-fold lower affinity than 1,25(OH)2D3 for renal 24-hydroxylase, suggesting that it is more resistant to catabolism by the C-24 oxidation pathway; and (ii) EB 1089 and 1,25(OH)2D3 exhibit tissue-specific differences in vitamin D receptor-mediated responses in vivo that may be ascribed, at least in part, to differences in binding affinities for the vitamin D receptor.

UI MeSH Term Description Entries
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

S Roy, and J Martel, and H S Tenenhouse
June 1978, The Journal of biological chemistry,
S Roy, and J Martel, and H S Tenenhouse
January 1994, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S Roy, and J Martel, and H S Tenenhouse
February 2003, Journal of cellular biochemistry,
S Roy, and J Martel, and H S Tenenhouse
August 1990, The American journal of physiology,
S Roy, and J Martel, and H S Tenenhouse
December 1975, Archives of biochemistry and biophysics,
S Roy, and J Martel, and H S Tenenhouse
February 1991, Archives of biochemistry and biophysics,
S Roy, and J Martel, and H S Tenenhouse
July 1993, Biochemical and biophysical research communications,
S Roy, and J Martel, and H S Tenenhouse
September 1982, The Journal of biological chemistry,
Copied contents to your clipboard!