Phenobarbital-induced activation of CYP2H1 and 5-aminolevulinate synthase genes in chick embryo hepatocytes is blocked by an inhibitor of protein phosphorylation. 1996

S C Dogra, and B K May
Department of Biochemistry, University of Adelaide, South Australia, Australia.

The phenobarbital-induced activation of cytochrome P4502H1 (CYP2H1) and 5-aminolevulinate synthase (ALAS-1) genes in chick embryo hepatocytes occurs at the level of gene transcription, but the molecular mechanism underlying this induction is not understood in detail. In the present study, we report that the protein kinase inhibitor 2-aminopurine markedly inhibits the phenobarbital-induced activation of CYP2H1 and ALAS-1 genes as measured by Northern blot analysis, but does not alter the basal expression of these genes in the absence of drug. Transient expression studies confirmed these findings. The construct pCATBg4.8 contains a 4.8-kb drug-responsive domain of the CYP2H1 gene fused to the enhancerless SV40 promoter and the drug-induced expression of this construct in chick embryo hepatocytes was inhibited by 2-aminopurine. Another construct pCAT, with the first 547 bp of 5' flanking region of the CYP2H1 gene, is not responsive to drug and basal expression of this construct was not altered by the addition of 2-aminopurine. The evidence presented here demonstrates that the inhibitory action of 2-aminopurine on drug-induction is not due to a toxic effect on the cells. The induction of the CYP2H1 gene by phenobarbital was not altered by treating cells with the specific inhibitors for protein kinase C (GF 109203X and Ro 31-8220) or prolonged exposure to 12-O-tetradecanoyl-phorbol 13-acetate (TPA) or treatment with the specific inhibitors for tyrosine kinase (genistein and tyrphostin A25). Overall, the data indicate that a 2-amino-purine-sensitive protein kinase activity is required for the phenobarbital-induction mechanism but this is unlikely to be a protein kinase C or tyrosine kinase. It can be postulated that phosphorylation of a drug receptor protein may be an important step in the drug-induction process.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009570 Nitriles Organic compounds containing the -CN radical. The concept is distinguished from CYANIDES, which denotes inorganic salts of HYDROGEN CYANIDE. Nitrile
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

S C Dogra, and B K May
December 1999, Archives of biochemistry and biophysics,
S C Dogra, and B K May
January 1996, Biochemistry and cell biology = Biochimie et biologie cellulaire,
S C Dogra, and B K May
October 2005, Biochemistry and cell biology = Biochimie et biologie cellulaire,
S C Dogra, and B K May
November 1983, Biochemical and biophysical research communications,
S C Dogra, and B K May
January 1983, Biochemical and biophysical research communications,
S C Dogra, and B K May
May 1997, Archives of biochemistry and biophysics,
Copied contents to your clipboard!