Stereospecific effects of R-lipoic acid on buthionine sulfoximine-induced cataract formation in newborn rats. 1996

I Maitra, and E Serbinova, and H J Tritschler, and L Packer
Department of Molecular and Cell Biology, University of California, Berkeley, 94720-3200, USA.

This study revealed a marked stereospecificity in the prevention of buthionine sulfoximine-induced cataract, and in the protection of lens antioxidants, in newborn rats by alpha-lipoate, R- and racemic alpha-lipoate decreased cataract formation from 100% (buthionine sulfoximine only) to 55% (buthionine sulfoximine + R-alpha-lipoic acid) and 40% (buthionine sulfoximine + rac-alpha-lipoic acid) (p<0.05 compared to buthionine sulfoximine only). S-alpha-lipoic acid had no effect on cataract formation induced by buthionine sulfoximine. The lens antioxidants glutathione, ascorbate, and vitamin E were depleted to 45, 62, and 23% of control levels, respectively, by buthionine sulfoximine treatment, but were maintained at 84-97% of control levels when R-alpha-lipoic acid or rac-alpha-lipoic acid were administered with buthionine sulfoximine; S-alpha-lipoic acid administration had no protective effect on lens antioxidants. When enantiomers of alpha-lipoic acid were administered to animals, R-alpha-lipoic acid was taken up by lens and reached concentrations 2- to 7-fold greater than those of S-alpha-lipoic acid, with rac-alpha-lipoic acid reaching levels midway between the R-isomer and racemic form. Reduced lipoic acid, dihydrolipoic acid, reached the highest levels in lens of the rac-alpha-lipoic acid-treated animals and the lowest levels in S-alpha-lipoic acid-treated animals. These results indicate that the protective effects of alpha-lipoic acid against buthionine sulfoximine-induced cataract are probably due to its protective effects on lens antioxidants, and that the stereospecificity exhibited is due to selective uptake and reduction of R-alpha-lipoic acid by lens cells.

UI MeSH Term Description Entries
D007908 Lens, Crystalline A transparent, biconvex structure of the EYE, enclosed in a capsule and situated behind the IRIS and in front of the vitreous humor (VITREOUS BODY). It is slightly overlapped at its margin by the ciliary processes. Adaptation by the CILIARY BODY is crucial for OCULAR ACCOMMODATION. Eye Lens,Lens, Eye,Crystalline Lens
D008063 Thioctic Acid An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. Lipoic Acid,Alpha-Lipogamma,Alpha-Lipon Stada,Alpha-Liponsaure Sofotec,Alpha-Lippon AL,Alphaflam,Azulipont,Fenint,Juthiac,Liponsaure-ratiopharm,MTW-Alphaliponsaure,Neurium,Pleomix-Alpha,Pleomix-Alpha N,Thioctacid,Thioctacide T,Thiogamma Injekt,Thiogamma oral,Tromlipon,Verla-Lipon,alpha-Lipoic Acid,alpha-Liponaure Heumann,alpha-Liponsaure von ct,alpha-Vibolex,biomo-lipon,duralipon,espa-lipon,Acid, alpha-Lipoic,Alpha Lipogamma,Alpha Lipon Stada,Alpha Liponsaure Sofotec,Alpha Lippon AL,AlphaLipogamma,AlphaLipon Stada,AlphaLiponsaure Sofotec,AlphaLippon AL,Injekt, Thiogamma,Liponsaure ratiopharm,Liponsaureratiopharm,MTW Alphaliponsaure,MTWAlphaliponsaure,Pleomix Alpha,Pleomix Alpha N,PleomixAlpha,PleomixAlpha N,Verla Lipon,VerlaLipon,alpha Lipoic Acid,alpha Liponaure Heumann,alpha Liponsaure von ct,alpha Vibolex,alphaLiponaure Heumann,alphaLiponsaure von ct,alphaVibolex,biomo lipon,biomolipon,espa lipon,espalipon
D008717 Methionine Sulfoximine Sulfoximine, Methionine
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002386 Cataract Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed) Cataract, Membranous,Lens Opacities,Pseudoaphakia,Cataracts,Cataracts, Membranous,Lens Opacity,Membranous Cataract,Membranous Cataracts,Opacities, Lens,Opacity, Lens,Pseudoaphakias
D005260 Female Females
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium

Related Publications

I Maitra, and E Serbinova, and H J Tritschler, and L Packer
February 2008, Free radical biology & medicine,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
March 1990, Cancer letters,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
March 2004, [Zhonghua yan ke za zhi] Chinese journal of ophthalmology,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
October 1988, Experimental and molecular pathology,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
January 1990, Pharmacology,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
January 1988, Archives of toxicology,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
August 1987, Toxicology letters,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
November 1997, Research communications in molecular pathology and pharmacology,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
December 1988, The American review of respiratory disease,
I Maitra, and E Serbinova, and H J Tritschler, and L Packer
April 1997, Journal of pineal research,
Copied contents to your clipboard!